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a  b  s  t  r  a  c  t

This  paper  deals  with  two  topics  from  state  and  parameter  estimation.  The  first  contribution  of this
work  provides  an overview  of  techniques  used  for  determining  which  parameters  of  a  model  should
be  estimated.  This  is a question  that  commonly  arises  when  fundamental  models  are  used  as  these
models  often  contain  more  parameters  than  can  be  reliably  estimated  from  data.  The  decision  of  which
parameters  to estimate  is independent  of  the  observer/estimator  design,  however,  it is directly  affected  by
the  structure  of  the  model  as well  as the  available  data.  The  second  contribution  is  an  overview  of  recent
developments  regarding  the  design  of nonlinear  Luenberger  observers,  with  special  emphasis  on exact
error linearization  techniques,  but  also  discussing  more  general  issues,  including  observer  discretization,
sampled  data  observers  and  the  use  of  delayed  measurements.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The use of fundamental models for process monitoring and con-
trol has become increasingly popular in recent years. However, the
performance of a particular application does not only depend upon
the algorithms used but also upon the quality of the model. This
realization has led to several new research directions over the last
few decades, two of which are reviewed in this work. One of these
research areas focuses on the use of nonlinear models, and proce-
dures required for dealing with these nonlinear models, to more
appropriately describe a nonlinear system.

One type of approach for improving model accuracy, regard-
less if these are linear or nonlinear models, is to estimate model
parameters from data. While there has been a significant interest
in algorithms used for parameter estimation, the questions of how
many and which parameters should be estimated have only been
addressed more recently. The first part of this paper provides an
overview of existing methods for selecting parameters for estima-
tion.

The second part of this paper reviews theory and algorithms
of nonlinear Luenberger observers for state and parameter esti-
mation, focusing on recent methods and results from nonlinear
systems theory. In a sense, this work complements a review paper
presented at the previous CPC on particle filters and moving horizon
estimators (Rawlings & Bakshi, 2006).
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2. Regularization techniques for parameter estimation of
complex dynamic models

This section focuses on parameter estimation which plays an
important role in process monitoring as well as mathematical mod-
eling. Despite significant advances over the last few decades, this
topic is still an active area of research and several review arti-
cles dealing with parts of this problem have been published in the
last decade (Ashyraliyev, Fomekong-Nanfack, Kaandorp, & Blom,
2009; Chou & Voit, 2009; Dochain, 2003; Esposito & Floudas, 2000;
Jimenez-Hornero, Santos-Duenas & Garcia-Garcia, 2009; Maria,
2004; McLean & McAuley, 2012; Moles, Mendes & Banga, 2003).
Oftentimes, parameter estimation deals with the algorithms used
for performing the estimation; in fact the second contribution
of this work focuses on methodologies for estimating states and
parameters. However, it is equally important to decide which
parameters of a model should be estimated, why a particular sub-
set of the parameters should be estimated, and also how accurate
the estimation results will be based upon available data. This sec-
tion provides a review of existing techniques that can answer these
questions. One of the motivating factors behind these techniques
is that complex systems, e.g., chemical reaction networks, can con-
tain dozens to hundreds of parameters (Schoeberl, Eichler-Jonsson,
Gilles, & Muller, 2002), however, it is often not possible to estimate
more than a handful of these. In these cases, the accuracy of the esti-
mates, and the model predictions resulting from these estimates,
are strongly affected by the parameters chosen for estimation.

One challenge arising from estimation of complex systems is
that the estimation problem is ill-conditioned. The reason for this
is that a complex model contains a large number of parameters
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but not all of them are identifiable even if an unlimited amount of
noise-free data would be available. Accordingly, the effects that
changes in the parameters have on the outputs are correlated and
the solution to the estimation problem is not unique. Further-
more, experimental data inevitably contain noise and the amount
of available data is often limited. These limitations regarding the
availability and quality of the data pose further challenges to the
estimation problem since the optimal solution of the parameter
values can be sensitive to variations in the data (Gutenkunst et al.,
2007). Furthermore, similarly to what is widely known in system
identification, parameters that best fit the training data are not
necessarily the best ones from a practical point of view (Slezak,
Suarez, Cecchi, Marshall, & Stolovitzky, 2010). Therefore, estima-
tion of a complex system does not merely deal with determining
the optimal solution to the data fitting problem but instead needs
to focus on computing a solution which is robust to variations in
the experimental data.

A  second challenge that arises from estimation of a complex
system is associated with the computational burden. Since a closed-
form solution of the differential equations which describe a model
is generally not available, it is only possible to evaluate the model
via simulations. Since parameter estimation deals with solution of
an optimization problem, the model needs to be evaluated repeat-
edly which can quickly result in estimation problems that are
computationally prohibitive even for medium-scale problems.

A large number of techniques have been presented in the lit-
erature to address these problems in one way or another. A brief
review of these techniques is provided in this section. The review
is not meant to be comprehensive as this research area spans many
different subtopics and is also an active area of research in many
different fields of engineering. Instead, the work presented in this
section focuses on techniques used for selecting a set of parameters
for estimation. The reason for focusing on this area is that no review
of existing techniques has previously been published in this field
and that this approach aids regularizing ill-conditioned estimation
problems.

This section is organized as follows. The formulation of the esti-
mation problem for dynamic systems is presented next. After that,
a general framework for regularization is proposed and three com-
monly used regularization techniques are compared. The following
section focuses on the parameter selection procedure, which is one
of the regularization approaches. As parameter selection encom-
passes a variety of methods, only the popular orthogonalization
method is investigated further in the following section. This sec-
tion concludes by presenting some suggestions for possible future
research in this field.

2.1. Model formulation for estimation of dynamic systems

Parameter estimation aims to infer parameter values from avail-
able data so that the model predictions can accurately reflect the
data (van den Bos, 2007). To estimate parameters of a dynamic sys-
tem, a regression model is formulated that involves the differential
equations. This formulation is presented in this subsection.

A time-invariant dynamic system is described by a set of ordi-
nary differential equations as{
ẋ(t) = f (x(t), u(t), �)

y(t) = g(x(t), u(t), �)
(1)

where x is the state vector, u is the input vector, y is the output
vector, and � is the parameter vector.

The first step in parameter estimation is to derive an expression
representing the parameter–output relationship. For the dynamic
model shown in Eq. (1),  the output y can be evaluated by model
simulations, assuming that the initial state x(0), the input profile

u(t), and the parameter vector � are available. The resulting
parameter–output relationship is denoted by y(t, �) which is time-
dependent, and generally lacks a closed-form solution expression.

The next step is to formulate the regression model by discretiz-
ing the output profiles and by including noise information. Given a
set of time points {t1, t2, · · ·, tm},  the output is sampled as

h(�) =
[
y1(t1, �), . . . , y1(tm, �), . . . , yn(t1, �), . . . , yn(tm, �)

]T
(2)

where y1, y2, . . .,  yn are entries in the output vector y. After sam-
pling, the continuous output profiles are discretized and the
discretized output vector is only a function of the parameters,
denoted by h(�). Since all measurements contain some level of
noise, the data available for estimation are given by

ỹ = h(�) + ε (3)

where ỹ is the data vector, h(�) represents the model prediction,
and ε denotes the noise vector. Apart from the model structure,
information about the noise distribution plays an important role in
parameter estimation. This distribution determines both formula-
tion of the optimization problem for parameter estimation and the
statistics of the estimated parameter values. In practice, a descrip-
tion of the noise is usually not accurately known and it is often
assumed to be Gaussian, denoted by ε∼N(0,�2I) where the mean
vector is 0 and the covariance matrix is �2I.

The third step in parameter estimation is to formulate an opti-
mization problem which computes the parameter estimates as the
optimal solution to the problem. Maximum likelihood estimation
is commonly used, which estimates parameters by maximizing
the likelihood function. In the case of Gaussian noise, maximum
likelihood estimation reduces to least squares estimation, which
computes the parameter estimates by minimizing the difference
between the model prediction and the measured data as

�̂ = argmin
�

(ỹ− h(�))T (ỹ− h(�)) (4)

where the difference is measured by the squared Euclidean norm.
It should be noted that estimation of a complex system is usually

an ill-conditioned problem, i.e., the optimal least squares solution
may  be very sensitive to variations in the data. One approach to
deal with this problem is to perform regularization to avoid ill-
conditioning.

2.2. Regularization of ill-conditioned parameter estimation
problems

When the estimation problem is ill-conditioned, a variety of reg-
ularization techniques can be applied to compute a robust solution.
However, no detailed review of these regularization techniques
exists in the literature and there is lack of a unified framework as
part of which these regularization techniques can be viewed. For-
mulating such a general framework for regularization can provide
insights into the commonalities but also into the differences that
exist between the different techniques and, ultimately, help select
an appropriate method. An attempt to present such a unified frame-
work is made in this subsection where the framework combines
three commonly used regularization techniques. Since regulariza-
tion techniques for a nonlinear system are frequently extensions of
those for a linear system, the linear case is investigated first.

The linear version of the regression model given by Eq. (3) is
assumed be given by

ỹ = H� + ε (5)

The design matrix H is assumed to have a full column rank. If the
design matrix is rank-deficient then the columns which are linearly
dependent on others can be eliminated as well as the associated
parameters. In this case, the reduced model will generate identical
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