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a b s t r a c t

Slamming pressures are predicted using a nonlinear ship motion program whose input is an ensemble of

short wave trains tailored to produce a large, linear pitch response. These short wave trains are calculated

via a design methodology that first creates short time series containing a specified, large ship response

and then back-calculates the incident wave trains using linear systems theory. The background

simulations and theory used to create these short time series are presented here. Monte Carlo simulation

of moderately rare events of a random process indicate the random Fourier component phase PDFs are

non-uniform, non-identically distributed, and dependent on the rarity of the target event. These PDFs are

modeled using a single parameter, Modified Gaussian distribution and used to generate design time series

with a given expected value at a specific time. To predict rare events without resorting to Monte Carlo

simulation, the parameters of the Modified Gaussian distributions are calculated via characteristic

function comparison. The characteristic functions compare a target PDF calculated from extreme value

theory to a PDF based on a discrete Fourier representation of the stochastic process with non-uniform

component phases. The comparison to extreme value theory helps to quantify the risk associated with

rare events.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In traditional ship design, the pressure on the hull due to
slamming has been included in the ship’s environmental loading
via a rule-based factor. For example, classification societies com-
monly provide guidelines of the design pressure that includes the
bottom slamming as functions of length, beam, displacement, and
so on. These rules are empirically based and may inadequately
cover new or unconventional hull designs due to limited existing
data on such hulls. Ideally, the rule-based initial estimates on
slamming pressure should be further refined by computer simula-
tions or model tests, but in practice it is difficult to simulate the
conditions that lead to extreme slamming pressures.

Traditional Monte Carlo computer simulation assumes that
extreme responses will eventually be recorded if a sufficiently
long exposure time is simulated, either by computer or in a wave
tank. However, high fidelity long exposure times are generally not
feasible to simulate due to the computationally intensive, non-
linear nature of ship-wave interactions. Similarly, physical model
tests are expensive and constrained by the dimensions of the wave
tank resulting in necessarily short exposure times. These limita-
tions are especially felt during the initial design process, when

many different designs must be swiftly evaluated to find the
optimal hull design. Therefore, research into generating large
waves and/or responses in an efficient manner has been performed
in order to provide ensembles with short exposure times suitable
for use in computer simulation or model tests.

Previously, generation of short time series with large waves
and/or responses has primarily focused on the most likely linear
representation of a wave (Tromans et al., 1991; Steinhagen, 2002;
Clauss et al., 2004) or response (Adegeest et al., 1998; Pastoor,
2002; Clauss and Hennig, 2003). Also, Jensen and Pedersen (2006)
investigated the most likely wave episode leading to parametric
roll, a nonlinear response. These methods produce a given instance
of a large wave or response, but the particular behavior of the
system leading to and from that instance is lost due to the averaging
effect of finding the most likely representation. Also, it is difficult to
generate an ensemble of sample time series containing the large
wave or response as these methods focus on finding only the single
most likely large wave or response.

The current work seeks, in part, to determine a method of
directly estimating an ensemble of sample time series that, when
averaged at each time step, produce the most likely large wave or
response. Assuming stationarity and ergodicity, a random process,
x(t), may be approximated as

xðtÞF
XN

j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ ðojÞDo

q
cosðojtþejÞ ð1Þ
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where Sþ ðoÞ is the single-sided spectrum that describes the
process, N is the number of harmonic components, oj is the jth
frequency, and ej is the random phase angle associated with oj

and is uniformly distributed between�p and p. Given a maximum
value, a, at time t¼0 (xð0Þ ¼ a), Lindgren (1970) analytically
derived the expected (i.e. average) time series, xðtÞ, as arðtÞwhere
rðtÞ is the unit autocorrelation function,

rðtÞ ¼R
1

s2

Z 1
0

Sþ ðoÞeiot do
� �

continuous spectrum

F
1

s2

XN

j ¼ 1

Sþ ðojÞDocosojt discrete spectrum ð2Þ

and s is the area under the spectrum,

s2 ¼

Z 1
0

Sþ ðoÞ do ð3Þ

This result was also found numerically by Boccotti (1983) and is the
basis for Tromans’ work cited above. However, this average time
series cannot be related to the overall statistics characterizing a,
nor does it capture the behavior of the process before and after
the occurrence of a single realization of the maximum. More
importantly, the average time series cannot be related back to a
deterministic ensemble of individual instances of x(t). Moreover,
this representation of an extreme event cannot be used with linear
theory to relate instances of extreme ship response back to the
corresponding incoming wave as all information about the phases
that created that particular response, ej, is lost.

Dietz et al. (2004) created the Conditional Random Response
Wave (CRRW) approach to address the lack of time series varia-
bility. The CRRW method approximates a random process, x(t),
slightly differently than Eq. (1)

xðtÞCRRWF
XN

j ¼ 1

VjcosðojtÞþWjsinðojtÞ ð4Þ

where Vj and Wj are independent, standard normal random
variables. The CRRW method then generates an ensemble of
random time series containing a specified large ship response by
conditioning Vj and Wj such that the desired response value appears
as a peak (or trough) at t¼0. The CRRW method has also been
compared to towing tank experiments by Drummen and Moan
(2007) for midship vertical hogging bending moment.

In practice, Eqs. (1) and (4) are equivalent: a random process is
approximated by summing independent sinusoidal components.
Eq. (1) uses one set of components each with a deterministic
amplitude (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ ðojÞDo

q
), calculated from the process’ spectrum,

and a uniform random phase angle (ej). Eq. (4) uses two sets of
components each with a random amplitude, calculated from the
process’ spectrum (Vj and Wj). However, the conditioning process in
the CRRW method theoretically affects both Vj and Wj. There is
concern that the conditioning could inadvertently change the
response spectrum through changing Vj and Wj.

To retain the ability to create an ensemble of x(t) for use in linear
ship-wave theory while preserving the integrity of the response
spectrum, Troesch (1997) hypothesized that time series containing
a given maximum could be generated using a single Gaussian-type
distribution for the component phase angles. Later efforts to
investigate this hypothesis by preserving the phase information
from Fast Fourier Transforms proved inconclusive (Alford et al.,
2005). The phase distributions varied widely depending on the
time step, record length, and the subset of components used to
generate the phase histograms. Therefore, a new set of simulations
were undertaken to isolate the effects of the individual parameters.
The formulation of these simulations and their results presented in
this paper are the background of the design methodology presented

in Alford and Troesch (2009). This methodology, here defined as the
Design Loads Generator, is applied to create short wave trains that
lead to large pitch, a ship response that can be supposed to lead to
large slamming pressures. These short wave trains are then used as
input to the nonlinear Large Amplitude Motion Program (LAMP)
(Lin et al., 2008) to predict design slamming pressures.

2. Monte Carlo simulation of random processes

As previously mentioned in the application of the current theory
(Alford and Troesch, 2009), a random process with an associated
single-sided frequency spectrum, Sþ ðoÞ, may be approximated by
the summation of a finite number of components:

xðtÞF
XN

j ¼ 1

ajcosðojtþejÞ ð5Þ

where

aj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ ðojÞDo

q
ð6Þ

and ej is a random phase angle, typically uniformly distributed
between �p and p. The random process can also be described in
terms of the moments of its frequency spectrum:

mk ¼

Z 1
�1

okSþ ðoÞ do ð7Þ

The largest value of x(t) that this model can generate is

xmax ¼
XN

j ¼ 1

aj ð8Þ

The random process, x(t), is assumed to be stationary and
ergodic. Therefore, the probability density function (PDF) of x(t) is
also assumed to be a zero-mean, Gaussian distribution,

fxðxÞ ¼
1

s
ffiffiffiffiffiffi
2p
p e�x2=2s2

ð9Þ

where

s2 ¼
1

2

XN

j ¼ 1

a2
j

and the cumulative density function (CDF) of x(t) is

FxðxÞ ¼F
x

s

� �
ð10Þ

where F is the general CDF for a Gaussian random variable. For
sufficiently large N, the approximation of x(t) in Eq. (5) (the right-
hand side) can also be considered to be a zero-mean, Gaussian
process.

3. Conditions that cause extreme events

A typical time series generated by Eq. (5) is shown in Fig. 1.
Consider now an event x1 that occurs at time t1 (Fig. 1). x1 is
defined as

x1 � xðt1Þ ¼
XN

j ¼ 1

ajcosðojt1þejÞ ð11Þ

x1 is a random sample of the Gaussian process x(t). Therefore, x1

is a random variable with the same Gaussian distribution as x(t).
Since x(t) is considered to be a stationary and ergodic process,
statistics related to the distribution of x1 can be considered to be
equivalent to statistics of x(t). The time series that contains x1 at time
t¼0 may be constructed utilizing the following change of variables:

tu¼ t�t1 ð12Þ
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