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a  b  s  t  r  a  c  t

In  dynamic  optimization  problems,  the  optimal  input  profiles  are  typically  obtained  using  models  that
predict  the  system  behavior.  In  practice,  however,  process  models  are  often  inaccurate,  and  on-line  model
adaptation  is required  for  appropriate  prediction  and  re-optimization.  In  most  dynamic  real-time  opti-
mization  schemes,  the  available  measurements  are  used  to update  the  plant  model,  with  uncertainty
being  lumped  into  selected  uncertain  plant  parameters;  furthermore,  a piecewise-constant  parameteri-
zation  is used  for the  input  profiles.  This  paper  argues  that  the  knowledge  of  the  necessary  conditions  of
optimality  (NCO)  can  help  devise  more  efficient  and  more  robust  real-time  optimization  schemes.  Ideally,
the structuring  decisions  involve  the  NCO  as follows:  (i)  one  measures  or estimates  the  plant  NCO,  (ii)
a NCO-based  input  parameterization  is  used,  and  (iii)  model  adaptation  is  performed  to  meet  the  plant
NCO. The  benefit  of using  the  NCO  in  dynamic  real-time  optimization  is  illustrated  in  simulation  through
the  comparison  of  various  schemes  for solving  a final-time  optimal  control  problem  in  the  presence  of
uncertainty.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Optimization is important in science and engineering as a way
of finding the best solutions, designs or operating conditions. Opti-
mization is typically performed on the basis of a mathematical
model of the object of attention. For example, engineers might be
interested in the optimal operation of processes that either operate
at steady state or undergo transient changes. The object of atten-
tion, or reality, is called the “plant”, whereas the “model” is a set of
algebraic, differential or differential-algebraic equations.

In practice, optimization is complicated by the presence of
uncertainty in the form of plant-model mismatch and unknown
disturbances. Without uncertainty, one could use the model at
hand, optimize it numerically off-line and implement the optimal
inputs in an open-loop fashion. However, because of uncertainty,
additional information such as uncertainty description or plant
measurements must be included. In the former case, robust opti-
mization computes a set of inputs that guarantees feasibility either
for all possible realizations or with a desired probability level,
however at the expense of a conservative solution (Srinivasan,
Bonvin, Visser, & Palanki, 2003; Terwiesch, Agarwal, & Rippin,
1994). In the latter case, the inputs are updated in real-time
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based on measurements. This is the field of real-time optimiza-
tion, which is labeled RTO for static optimization problems (Marlin
& Hrymak, 1997) and DRTO for dynamic optimization problems
(Biegler, 2009). This paper deals with two major implementation
issues in DRTO, namely, model quality and computational aspects.

The issue of model quality raises an important question: Does
good performance require a good model? This is not necessarily
the case for control, since errors resulting from a poor model can
be offset by the action of feedback. In optimization, without feed-
back to make up for modeling errors, the model needs to represent
the reality accurately, in particular the optimality conditions of the
plant. The situation is slightly different in real-time optimization
since the measurements available on-line represent some form of
feedback. However, this feedback is only partial as it is typically
limited to output information. Furthermore, it is important to adapt
the model appropriately, that is, there where it matters most for
the purpose of optimization. These issues of measurement loca-
tion and input update in the context of imperfect model are crucial
for reaching optimality. It is argued in this paper that the neces-
sary conditions of optimality (NCO) predicted by the model need
to match those of the plant for plant optimality. We  will discussed
how the NCO measurements can be incorporated in a model so as
to be most useful for optimization.

The computational aspects are also crucial for implementation.
A very reliable optimization scheme is model predictive control
(MPC), which incorporates state feedback, uses a receding hori-
zon and carries out the optimization repeatedly at each sampling
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time (Rawlings & Mayne, 2009). MPC  was initially developed to
track a reference trajectory by minimization of a quadratic error
term. It has recently been extended to “economic MPC” that uses
a non-quadratic cost function (Heidarinejad, Liu, & Christofides,
2012; Rawlings & Amrit, 2009). Furthermore, there has been con-
siderable efforts in recent years to speed up the computations by
formulating convex optimization problems and also using algo-
rithms that exploit the structure of the problem (Diehl, Ferreau,
& Haverbeke, 2009; Richter, Morari, & Jones, 2011; Wang & Boyd,
2010). On the other hand, recent trends in DRTO have included
attempts to move the heavy computations off-line, where time
and computational power are more available, and limit the on-line
operations to quick decisions and easy computations. For example,
multi-parametric programming generates off-line a lookup table of
control laws, which are then used on-line based on the estimated
states of the plant (Bemporad, Morari, Dua, & Pistikopoulos, 2002;
Pistikopoulos, Georgiadis, & Dua, 2007; Zeilinger, Jones, & Morari,
2011). Also, “advanced step NMPC” strategies have been proposed,
which solve the detailed optimization problem in background and
apply sensitivity-based update on-line (D’Amato, Kumar, Lopez-
Negrete, & Biegler, 2012; Zavala & Biegler, 2009). Another approach
is the nonlinear real-time iteration scheme, which uses a continu-
ation Newton-type framework and solves one QP at each iteration
(Diehl, Bock, & Schlöder, 2005; Diehl et al., 2002). This allows
for multiple active set changes and thus ensures that the non-
linear MPC  algorithm cannot perform worse than a linear MPC
controller. Yet a different approach is NCO tracking, which uses
a NCO-based parameterization of the input profiles to design a
multivariable feedback scheme that tracks the first-order opti-
mality conditions, thereby pushing the system toward optimality
(Srinivasan & Bonvin, 2007).

This paper deals with the model-quality issue in DRTO. In the
presence of significant plant-model mismatch, the use of a fixed
nominal model is typically insufficient to drive the plant to opti-
mality. With MPC  for example, the estimated states are often
inaccurate, and one would need to update the model, which is
difficult to do in closed-loop operation due to the so-called dual
control problem (Aström & Wittenmark, 1995). This work adopts
the viewpoint that, in real-time optimization, the model is a vehi-
cle to process plant measurements and compute the optimal inputs.
This step involves two major decisions, namely, the choice of the
measured quantities and the choice of a finite number of decision
variables via input parameterization. Note that these choices can
benefit from knowledge of the NCO since the NCO are intimately
linked to plant optimality. The structure of the optimal solution
and the corresponding NCO can be determined off-line by numeri-
cal optimization. These measurement and input-parameterization
issues are briefly addressed next.

Measurements and uncertainty description. The measurements
are typically the plant outputs yplant. The uncertainty, which is
observed as the difference between the plant measurements and
the corresponding model predictions, can be represented as para-
metric variations of the plant model. Alternatively, if the NCO
elements can be measured, say yNCO, the model uncertainty can be
expressed as the difference between the measured and the pre-
dicted yNCO values. It is interesting to notice the close relation
between the type of measurements (the plant outputs yplant vs.
the NCO elements yNCO) and the uncertainty description (the plant
parameters �plant vs. the NCO deviations �NCO).

Parameterization and update of the inputs. The traditional way
of parameterizing infinite-dimensional inputs is control vector
parameterization (CVP), whereby the inputs are approximated as
piecewise-constant profiles. The main advantage is universality,
that is, any solution can be closely approximated by introducing a
sufficient number of pieces (barring certain numerical issues such
as ringing around discontinuities). However, CVP typically contains

Fig. 1. Measurement and input-parameterization features of various DRTO
schemes. The measured plant outputs are labeled yplant , the measured NCO elements
yNCO; the inputs are parameterized via control vector parameterization, �CVP ,  or via
the  elements of the NCO, �NCO . Plant-model mismatch can be absorbed in the plant
model parameters �plant or via an additive disturbance to the NCO values, �NCO .
“Ident” means the use of parameter identification, “Diff” the computation of a dif-
ference, “Opt” the use of numerical optimization, and “Control” the use of feedback
control.

a large number of piecewise-constant input values, denoted here
�CVP. In contrast, a parsimonious input parameterization, �NCO, can
be obtained from the knowledge of the NCO, that is, the input
elements correspond to switching times between arcs and input
values associated with certain arcs. The way  the inputs are param-
eterized impacts on the way  there are updated. With �CVP, the only
efficient way  to compute the inputs is through numerical opti-
mization. With �NCO, the few input parameters can be adjusted via
feedback control to regulate the deviation �NCO to zero.

Various DRTO schemes are possible based on the choice of the
measurement and input-parameterization options, some of which
are illustrated in Fig. 1 and discussed next.

• In the “two-step approach” of repeated parameter identification
and performance optimization, the measurements are used to
adapt the model parameters and estimate the current states. The
estimated states serve as initial conditions for the optimization
that is repeated on-line with the updated model (Chen & Joseph,
1987; Eaton & Rawlings, 1990). The input parameterization is of
the CVP type.

• In the modifier-adaptation approach, modifier terms are added
to the cost and constraint functions. Upon measurement of yNCO,
the modifiers are updated in order for the model and the plant
to have matching first-order optimality conditions (Chachuat,
Srinivasan, & Bonvin, 2009; Marchetti, Chachuat, & Bonvin, 2007).
These schemes use the measurements yNCO and the inputs �CVP
for optimization.

• It is also possible to perform numerical optimization using a NCO-
based input parameterization. Such a scheme has been developed
by Schlegel and Marquardt (2006a) and applied to an indus-
trial polymerization process in Schlegel and Marquardt (2006b).
The corresponding DRTO scheme consists in measuring yplant and
updating the model parameters accordingly, followed by numer-
ical optimization using the �NCO parameterization.

• Finally, NCO tracking uses the measurements of yNCO to update
�NCO using feedback control to meet the plant NCO (Srinivasan &
Bonvin, 2007).

This paper considers the implementation of optimal control in
the presence of significant uncertainty in the form of plant-model
mismatch, which requires some form of adaptation based on plant
measurements. Three possible adaptation strategies are consid-
ered, namely adaptation of the process model, adaptation of the
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