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In the present paper, analytic solutions are derived for scattering of water waves obliquely incident to a

partially reflecting semi-infinite breakwater or breakwater gap. In order to examine the correctness of the

derived solutions, they are compared with the solutions derived by McIver (1999) and Bowen and McIver

(2002) for a semi-infinite breakwater and a breakwater gap, respectively, in the case of perfect reflection.

The derived analytic solutions are used to investigate the effect of reflection coefficient of the breakwater

and wave incident angle upon the tranquility at harbor entrance. The tranquility is deteriorated by the

reflected waves as the reflection coefficient increases and as waves are incident more obliquely.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Water wave scattering by semi-infinitely long breakwaters has
long been a subject of coastal and ocean engineering researchers.
Penney and Price (1952) proposed an analytic solution for
diffracted waves around a semi-infinitely long impermeable
breakwater based on the Sommerfeld’s (1896) solution for
diffraction of light. They also obtained the solution for the waves
transmitted through a gap in a breakwater by superposing the
solutions for the semi-infinite breakwaters. Their results have been
cited and presented as a table or diffraction diagrams in many
textbooks and manuals, e.g., Wiegel (1964) and Coastal
Engineering Research Center (1984). Recently, Yu (1995) derived
the boundary condition for a thin porous wall based on the
formulation of Sollitt and Cross (1972), and used it to find an
approximate solution for diffraction of water waves normally
incident to a semi-infinite permeable breakwater. More recently,
McIver (1999) extended the Yu’s solution to obliquely incident
waves using the Wiener–Hopf technique. On the other hand,
Bowen and McIver (2002) derived an analytic solution for
diffraction by a gap in a permeable breakwater. They formulated
the problem in terms of an integral equation obtained by an
application of Green’s theorem that involves a new Green’s

function for permeable barriers. The integral equation is solved
numerically, and the solution is used to obtain the diffraction
coefficient that describes the far-field behavior of the
scattered waves.

The solution of Penney and Price (1952) could be used for a
vertical caisson breakwater, whilst those of Yu (1995), McIver
(1999), and Bowen and McIver (2002) could be used for a rubble
mound breakwater or any other permeable breakwaters such as
curtain wall or pile breakwaters. Nowadays, to reduce wave
reflection from, and impulsive wave pressure acting on, a
vertical caisson breakwater, a horizontally composite breakwater
(i.e. a vertical caisson breakwater covered with wave-energy-
dissipating concrete blocks, and named by Takahashi 1997) or a
perforated-wall caisson breakwater is often used, which has a
porous front and a solid back. Such type of breakwaters can also
improve the conditions for vessel navigation in harbor entrance
area, resulting in a safer approach to a harbor entrance or
maneuvering within the entrance itself (see McBride et al.,
1994). Very recently, following the approach of Penney and Price
(1952), Suh and Kim (2008) derived analytic solutions for water
wave scattering by a semi-infinite breakwater or a breakwater gap
of partial reflection. In the present study, their solution is extended
to obliquely incident waves. The derived solutions are then used to
investigate the effect of reflection coefficient of the breakwater and
wave incident angle upon the tranquility at harbor entrance.

Though not directly related to the present study, there are
several studies for calculating the reflection coefficient of obliquely
incident waves by a perforated-wall caisson breakwater using
eigenfunction expansion methods (e.g., Suh and Park 1995; Li et al.
2002; Teng et al. 2004). The reflection coefficient calculated by the
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eigenfunction expansion methods could be used as one of the input
data which are needed in the present solution.

2. Analytic solutions

2.1. Semi-infinite breakwater

As shown in Fig. 1, a semi-infinitely long breakwater of partial
reflection on both sides stands in water of uniform depth h.
Cartesian coordinates x, y, and z are chosen with origin by the
mean free surface at the tip of the breakwater, the x- and y-axes lie
in a horizontal plane and the z-axis is directed vertically upward.
The breakwater is placed along the positive x-axis. A regular wave
train is incident to the breakwater at an angle y0 counterclockwise
from the positive x-axis.

Assuming incompressible fluid and irrotational flow motion, the
velocity potential exists, which satisfies the Laplace equation. Linear-
izing the free-surface boundary conditions, the following boundary
value problem for the velocity potential F(x,y,z,t) is obtained:
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where Z(x,y,t) is the free surface elevation and g is the gravitational
acceleration. In Fig. 1, A1(0oyoy0) is the protected area,
A2(y0oyo2p�y0) is the area which is not directly influenced by
the breakwater, and A3(2p�y0oyo2p) is the reflection area.

First, the analytic solution is obtained for the case of normal
incidence (y0¼p/2). The solution for oblique incidence can be
obtained by the coordinate transformation of the solution for
normal incidence, as will be explained later. The velocity potential
satisfying the periodicity in time and the no-flow bottom boundary
condition is represented by

Fðx,y,z,tÞ ¼ Acosh½kðzþhÞ�Fðx,yÞeiot ð5Þ

where k and o are the wave number and wave angular frequency,
respectively, and F(x,y) is a complex function. Substituting Eq. (5)
into Eqs. (3) and (4) gives the dispersion relationship

o2 ¼ gktanhðkhÞ ð6Þ

On the other hand, substituting Eq. (5) into the Laplace equation
yields the Helmholtz equation in F(x,y):

@2F

@x2
þ
@2F

@y2
þk2F ¼ 0 ð7Þ

To solve this equation, we closely follow the approach of
Sommerfeld (1896), which is also summarized in Lamb (1945,
p. 538). The general solution to the preceding equation can be
expressed as the sum of two solutions:

Fðx,yÞ ¼ e�ikyF1ðx,yÞþeikyF2ðx,yÞ ð8Þ

Since the procedure for solving the equation is the same for both
solutions, the procedure is described only for one solution. Sub-
stituting the first solution into Eq. (7) gives
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It is convenient to introduce the following parameters:
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�c2, ky¼ 2xc ð10Þ
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where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
is the distance from the origin of the coordinate

system. We easily find
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Using these relations, Eq. (9) can be expressed as an equation of
x and c:
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This equation can be transformed into an ordinary differential
equation of a single variable r by using the relation u¼ f

(x–c)¼ f(r):

d2f

dr2
þ2ir df

dr ¼ 0 ð16Þ

Solving this equation, the following solution can be obtained:

F1 ¼ aþb
Z x�c

0
e�ir2

dr ð17Þ

Similarly, the second solution in Eq. (8) can be obtained as

F2 ¼ gþd
Z xþc

0
e�ir2

dr ð18Þ

The unknowns a, b, g, and d can be calculated by applying the
partial reflection condition at the breakwater:

@F

@n
þbF ¼ 0 ð19Þ

where n is the unit normal vector directing from water to the
breakwater, and b¼b1+ ib2 is the complex reflection coefficient.
Assuming that there is no phase difference between incident and
reflected waves, we have

b1 ¼ 0, b2 ¼ ksinyi
1�Cr

1þCr
ð20Þ

where Cr is the reflection coefficient at the breakwater, and yi is the
angle between the incident wave direction and the breakwater
crest line. In the case of normal incidence, n¼y and yi¼p/2 at the
front face of the breakwater, whilst n¼�y and yi¼0 at the backFig. 1. Definition sketch of wave motion around a semi-infinite breakwater.
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