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a b s t r a c t

Many problems in mechanics can be solved by the use of the transfer matrix method. The use of this

method in hydraulics engineering is not widespread and only limited studies are available. In this study,

linearized St. Venant equations were used and the use of transfer matrix in ocean engineering was

investigated for long waves in open channels, and numerical application was carried out. The results

obtained through the transfer matrix method, which is quite easy to use, program and comprehend,

showed similar results obtained from the characteristics method and finite differences method.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

St. Venant equations can be used in solving equations for wave
movements in shallow waters. Since St. Venant equations are non-
linear and second-degree hyperbolic, they cannot be integrated
directly. By linearizing St. Venant equations can be integrated. In
this study, non-linear term is usually neglected and the linearized
version of St. Venant equations was used and the transfer matrix
method (TMM) was considered for the purpose of obtaining a
solution for the long waves in open channels.

In the TMM, which is known as the method of initial values where
the aim is to convert the problem of boundary values into the problem
of initial value to prevent new constant values and to express
equations of the problem by initial constant values (Inan, 1968). With
the help of this method, many problems in mathematics can be solved
(Dimarogonas, 1996). The method can be used essentially for the
solution of 1D linear differential equations; however, after a proper
linearization process it can also be used to solve nonlinear problems.

The application of transfer matrix for the solution of hydraulic
problems is very limited. According to the finite elements method,
matrix dimensions are small, constant and independent of the
number of elements. Computer programing of the method is easy
and practical (Daneshfaraz and Kaya, 2007). The TMM can be used
in determining movements of waves in shallow waters.

When the studies on long wave in literature are viewed, it can
be seen that a series of studies were carried out. However no

study on the solution of long waves using transfer matrix is
available. Studies using other methods and approaches are given
below:

Tsai (2002) conducted theoretical investigations on the
propagation of long waves of one-dimensional, unstable, viscous
and turbulent open canal currents, and discussed the effect of the
Froude number on the formation of channel flows in shallow
waters depending on the location and time. Shi et al. (2005)
investigated the fundamental behavior of long water waves
propagating through branching channels of uniform depth and
width. They carried out numerical simulations based on the
Boussinesq long wave model to verify the effects of width of
channel branches on wave transmission and reflection. Koutitas
(1983) solved the linear long wave equation by using the finite
elements method. In the study, it was accepted that the flow
generated a sinusoidal vibration.

Onzikua and Odai (1998) proposed the Burgers equation model
for unsteady flow in open channels. In this model to simulate slow
transients in wide rectangular open channels of finite length, the
St. Venant equations are approximated by a single Burgers
equation for flow depth. Flow velocity is expressed as a function
of flow depth and its gradient to satisfy the continuity of the flow.
Tsai and Yen (2001) suggested a method for linear analysis of
shallow water wave propagation in open channels. In this study,
the Laplace transform method is adopted to obtain first-order
analytical spatiotemporal expressions of upstream and down-
stream channel response function.

The methods in the discussed studies are numerical methods.
However, the TMM is based on analytical solution. The TMM is
used in studies of Baume et al. (1998) and Litrico and Fromion
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(2006). Baume et al. (1998) expressed a need for using linear
control theory while pointing out the difficulty of complex
hydraulic systems to control. They obtained a reach transfer
matrix by liberation of St. Venant equations near a steady flow
regime. In this study, St. Venant equations were used in a
hydraulic application for the first time. However, the equations
were used between the two given points only. Litrico and Fromion
(2006) investigated the control of oscillating modes occurring in
open channels due to the reflection of propagating waves on the
boundaries. They characterized the effect of a proportional
boundary control on the poles of the transfer matrix by a root
locus which derived to an asymptotic result for high-frequency
closed-loop poles. Baume et al., (1998) and Litrico and Fromion
(2006) have solved linearized equations via the Laplace method.
In these studies, separation of variables method is used.

The proposed method in this study is also extendable and
applicable to study of wave interaction generated by vessels
moving in either parallel or opposite directions (Wu et al., 2001).

2. Equations for long linear waves in open channels

The dynamic behavior can be described by a set of equations
known as the St. Venant equations (Chaudhry, 1993):
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where B is the top water surface width (m), D is the hydraulic
depth (m), y the water depth (m), g the gravity acceleration (m2/s),
x the longitudinal abscissa in the direction of the flow, t the time,
S0 the bottom slope, Sf the energy gradient slope, u the average
velocity (m/s) and q the lateral inflow or outflow per unit length.

If there is not lateral inflow or outflow q ¼ 0, the St. Venant
equation for very wide rectangular cross-section channels. Eq. (1)
can be written as
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For Sf ¼ tb/rgh, Eq. (2) can be written as
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where x is the amplitude, h is the undisturbed flow depth, r is the
mass density of water and tb is shear stress at the base and is a
function of the velocity, and is described with the following
equation:

tb

r
¼ ku (5)

where k is equivalent friction coefficient. If Eq. (5) is substituted in
Eq. (4), Eq. (6) is obtained

qu

qt
þ u

qu

qx
¼ �g

qx
qx
�

ku

h
þ gS0 (6)

For shallow water wave propagation, Eqs. (3) and (6) can be
written. For gradual variations in x(x,t) (propagation of long
waves) and small variations in h(x) the non-linear term u(qu)/(qx)
is usually neglected and the linearized version of Eqs. (3) and (6)
is
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If the two equations above are combined and reorganized, a
second-degree, linear, and hyperbolic equation will be obtained
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If channel bottom slope is invariable, derivate of ‘gS0’ is zero. The
flow domain is discretized into equal elements of length Dx. The
water depth is assumed constant along each element (i),
hi ¼ const. (Koutitas, 1983).

3. Solution by the TMM

In various engineering problems, as the number of constants to
be determined by the use of boundary condition increases, the
calculation becomes more tedious and the possibility of making
errors increases. Therefore, in the formulation of such problems,
ways of reducing the number of constants to a minimum are
sought. The method of transfer matrix makes this possible. The
main principle of this theory, which is applied to problems with
one variable, is to convert all the boundary value problems into
problems of initials values, and thus new constants that may
result from the use of intermediate condition are eliminated.
Therefore, it is a method of expressing the equations in terms of
the initials constants. This method thus makes no distinction
between the so-called determinate and indeterminate problems
of elastomechanics (Inan, 1968).

There are a number of methods for solving the differential
equations, one of which is the TMM. The TMM is ideally suited to
solve mechanical systems, because only successive matrix multi-
plication is necessary to fit the elements together. One of the used
solutions of differential equation is separation of variables (Riley
et al., 1998). The method of separation of variables can be used to
obtain the solution of Eq. (9). Assuming that

xðx; tÞ ¼ xðxÞxðtÞ (10)

and substituting for x in Eq. (9), we obtain
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If simplifications are made, the following equation will be
obtained:
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where a is a constant and equals to 2p/7. Thus, we find that x(x)
and x(t) satisfy the ordinary differential equations
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then Eq. (13) can be written as
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The solution of Eq. (15) may be written as follows:
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The first derivative of x(x) can be expressed as
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