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a b s t r a c t

The prediction of rubble-mound breakwater damage under wave action has usually relied on costly and

time-consuming physical model tests. In this work, artificial neural networks (ANNs) are applied to

estimate the outcome of a physical model throughout an experimental campaign comprising of 127

stability tests. In order to choose the network best suited to the problem data, five different activation

function options and 38 network architectures are compared. The good agreement found between the

physical model and the neural network shows that an ANN may well serve as a virtual laboratory,

reducing the number of physical model tests necessary for a project.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The most important mode of failure of rubble-mound break-
waters is removal of armor layer units by wave action (Bruun,
1985). A good design must ensure that under the worst expected
storm waves, the number of armor units displaced by waves is low
enough that breakwater collapse does not ensue, so that the
damage can be duly repaired after the storm. As the stability of
armor units is mainly assured by gravity, the determination of
unit weight is a crucial step in the design process. Since the
pioneering work by Iribarren (1938), several empirical formulae
have been presented for this purpose, such as those of Hudson et
al. (1979), Losada and Giménez-Curto (1979), or Van der Meer
(1988). It is however all but impossible for a simple formula to
fully account for the complex response of a rubble-mound
structure in the face of storm waves—hence the need for hydraulic
model tests in coastal engineering practice, with the eventual
exception of minor structures. Such laboratory tests are costly and
time consuming. In the present study artificial neural networks
(ANNs; Lippmann, 1987; Haykin, 1999) are used to simulate the
behavior of a model rubble-mound breakwater in a wave flume.

ANNs have already been used in ocean engineering, in
particular to study rubble-mound breakwater stability. The
application of Mase et al. (1995) centered around the empirical
formula of Van der Meer (1988)—their ANN used the same
parameters and was trained and tested on the data set that had

served to develop the formula. Medina et al. (2003) used an ANN
whose inputs were the relative wave height, the Iribarren number
of the waves, and a variable representing the laboratory where the
stability tests had been carried out, which eventually proved
irrelevant. Kim and Park (2005) compared five different ANN
models and showed that the ANN technique can yield better
results than a conventional empirical model. Yagci et al.
(2005) used various artificial intelligence techniques, including
ANNs, characterizing the waves by their height, period, and
steepness.

All these works have in common the application of multilayer
feedforward networks trained with the backpropagation algo-
rithm (Freeman and Skapura, 1991), usually known as feedforward
backpropagation networks, to the problem of rubble-mound
breakwater stability. An important difficulty when using this kind
of model resides in the absence of rules to define the neural
architecture (the number of neuron layers and of neurons in each
layer) that will perform best in a given problem. It is shown in this
work that the model’s ability to simulate the breakwater response
under wave attack may vary significantly between architectures;
hence the decision as to which architecture to use should be based
on a comparison of the performances of a number of reasonable
options. However, the above-mentioned studies have used only
one ANN, or a few at most. In this work, the performances of 38
different architectures of feedforward backpropagation networks,
ranging from one to six hidden neuron layers, are compared.
Moreover, as the results of a feedforward backpropagation model
also depend on the activation functions used by the neurons to
generate their output, five different combinations of activation
functions are also compared.
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The main advantage of feedforward backpropagation networks
lies in their generalization capabilities, meaning that they may be
used to estimate the armor damage that a model breakwater will
sustain under a given set of conditions even if these conditions
were not part of the data set with which the network was trained.
Yet, feedforward backpropagation networks are not without
drawbacks; among them are the results’ sensitivity to the
initialization weights, which are randomly set at the beginning
of the training process. This aspect has been mostly unattended in
previous ocean engineering applications of this kind of ANNs. In
this study, the spurious influence of the initialization values is
avoided by training and testing each neural network 40 times, and
averaging the results.

The Iribarren number of the waves determines the kind of
breaking occurring on the breakwater slope, which in turn controls
how the incident energy is expended, i.e. the balance between
reflection, dissipation, and transmission to the leeward. Needless to
say, this balance has a great effect on the hydrodynamics on the
slope. For this reason the Iribarren number is included among the
network inputs in this work, alongside the wave height, period and,
last but not the least, the damage level of the structure prior to each
wave run. If the ANN is to reproduce the behavior of a model
breakwater, it should not be left without this piece of information,
which is obviously available to the physical model.

2. ANNs

An ANN (Lippmann, 1987; Haykin, 1999) is an information-
processing system based on generalizations of human cognition or
neural biology. It consists of many simple computational neurons,
also called neural units or process elements, connected to each
other much in the same way as ‘‘real’’ (biological) neurons in the
brain—hence its name. An input vector is presented to the input
neurons and propagated through the whole network until
eventually some kind of output is produced. The most common
type of ANN—and the one used in this work—is the feedforward
backpropagation network, which is composed of different layers
of neurons intertwined through feedforward connections, mean-
ing that the output of a neuron in a given layer cannot be input to
neurons of the same or preceding layers. This kind of network is
usually trained with the backpropagation algorithm (Johansson et
al., 1992), a gradient descent technique based on the adjustment
of the weights of the neural connections to minimize the error.
First, the error is computed by comparing the expected output
with that obtained for a certain set of input data. Second, the error
is propagated backward from the last or output layer until the first
or input layer, and the weights are adjusted in the process.
This procedure is repeated over and over with the same set of data
(known as the training data) until either an error threshold or the
maximum number of iterations is eventually reached. Finally, the
ANN is tested for validation with a different set of data (the testing
data).

Although in principle neurons may use any differentiable
function as transfer or activation function, the most common
functions in backpropagation networks are the log-sigmoid, tan-
sigmoid, and linear transfer functions:

y ¼ logsigðxÞ ¼
1

1þ expð�xÞ
, (1)

y ¼ tansigðxÞ ¼
2

1þ expð�2xÞ
� 1, (2)

and

y ¼ linðxÞ ¼ x. (3)

With one or more hidden layers consisting of sigmoid neurons
and a linear output layer, the ANN can approximate any function
with a finite number of discontinuities. If the linear output layer is
dispensed with, the network output will be limited to the interval
(0, 1) or (�1, 1), in the case of log-sigmoid or tan-sigmoid neurons,
respectively.

3. Experimental data

The data for training and testing the ANNs were obtained from
stability tests of a model rubble-mound breakwater. The experi-
mental setup and the testing procedure are briefly described
hereafter. A detailed description was reported in Iglesias et al.
(2003).

The stability tests were carried out in a wave flume at the
CITEEC laboratory of the University of A Coruña, Spain. The flume
is 33.8 m long, 4 m wide, and 0.8 m deep (Fig. 1). The wave
generator is a piston-type paddle capable of generating regular
and irregular waves, and equipped with active absorption of
reflected waves. A wave-absorbing gravel ‘‘beach’’ is located at the
downwave end of the flume. It is 7 m long, with a parabolic profile
culminating at a height of 0.55 m above the flume bottom. Prior to
the model breakwater’s construction, reflection tests were
performed with waves of different heights and periods; the
reflection coefficients were below 0.1 (10%) in all cases tested.

The model section of the flume was divided into three
longitudinal strips, henceforward known as subflumes, by means
of vertical wooden panels parallel to the flume axis (Figs. 1 and 2).
This division not only enabled three tests to be performed
simultaneously but also prevented the generation of spurious
transversal oscillations due to the reduced width of the sub-
flumes. The lateral subflumes were 1.5 m wide, with an effective
model width of 1.0 m, while the central subflume was 1.0 m wide.

Three model breakwaters of identical cross-section were
constructed in the three subflumes. The model breakwater section
consisted of a core, a filter layer, and an armor layer (Fig. 3),
representing a typical breakwater in 15 m of water at a 1:30 scale.
The crown height of the model breakwater was sufficient to
prevent wave overtopping under the wave conditions tested (see
below). The core material was fine gravel with a median size
D50 ¼ 6.95 mm. The filter layer was made up of coarser gravel,
D50 ¼ 15.11 mm, with characteristic weights W50 ¼ 9.3 g, W15 ¼

5.6 g, and W85 ¼ 14.5 g. The armor units were angular stones
weighing W ¼ 69 g710% (nominal diameter Dn ¼ 2.95 cm), with
the armor layer consisting of two layers of units. The stones in the
upper armor layer were painted in three horizontal stripes of blue,
red, and black, so that a displaced stone could be ascribed to a part
of the armor layer; those in the lower layer were painted in white,
so that the vacuum left in the upper layer by a removed stone
would stand out on a slope photograph.

Water surface elevation was measured at 10 points in the
flume using twin wire conductivity wave gauges. Each subflume
was instrumented with a group of three wave gauges aligned
perpendicular to the face of the model breakwater (Figs. 1 and 2),
with the central gauge of the group at a distance of 1.36 m from
the structure toe; the distances of the other two gauges were
varied according to the wave period of the test. Finally, a gauge
was installed on the flume centerline at a distance of 3 m from the
wave paddle. The sampling rate was 20 Hz, and data acquisition
was synchronized with the start of wave generation. The method
of Baquerizo (1995) was used to estimate the reflection coefficient
for each test from the wave gauge records. Based on the free
surface displacements measured at three nearby points aligned
with the wave direction, the method relies on a least squares
technique to separate the incident and reflected waves and
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