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Wave-height distributions and nonlinear effects
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Abstract

Theoretical distributions proposed for describing the crest-to-trough heights of linear waves are reviewed briefly. To explore the effects

of nonlinearities, these are generalized to second-order waves, utilizing quasi-deterministic results on the expected shape of large waves.

The efficacy of Gram–Charlier models in describing the effects of third-order nonlinearities on the distributions of wave heights, crests

and troughs are examined in detail. All models and a fifth-order Stokes–Rayleigh type model recently proposed are compared with linear

and nonlinear waves simulated from the JONSWAP spectrum representative of long-crested extreme seas, and also with oceanic data

gathered in the North Sea. Uncertainties arising from the variability of probability estimates derived from sample populations of limited

size are considered. Ultimately, the comparisons show that nonlinearities do not have any discernable effect on the crest-to-trough

heights of oceanic waves. Most of the linear models considered yield similar and reasonable predictions of the observed data trends.

Gram–Charlier type distributions seem neither effective nor particularly useful in describing the statistics of large wave heights or crests

under oceanic conditions. However, they do surprisingly well in predicting unusually large wave heights and crests observed in some 2D

wave-flume experiments and 3D numerical simulations of long-crested narrow-band random waves.
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1. Introduction

Current interest in the mechanics and statistics of large
waves necessitates a re-examination of various theoretical
forms for describing the distributions of wave heights and
crests (see e.g. Haver and Andersen, 2000; Stansell, 2004;
Walker et al., 2004; Fedele and Arena, 2003, 2005; Janssen,
2005; Guedes Soares and Pascoal, 2005; Socquet-Juglard,
2005; Socquet-Juglard et al., 2005; Fedele, 2006; Onorato
et al., 2004, 2005, 2006; Tayfun, 2006). Over the years, a
variety of numerical, empirical and analytic wave height
and crest models have been proposed. Most of these have
been reviewed and compared previously (Forristall, 1984,
2000; Tayfun, 1990a, 2006). This study will first focus on
an initial short list of just three analytic crest-to-trough

wave-height models due to Tayfun (1981, 1990a), Naess
(1985) and Boccotti (1989). Of these, Naess’ model (N) has
received wide popularity. This is justifiably so due to its
simple functional form although previous comparisons
(Tayfun, 1990a) and those to be presented here indicate
that N underestimates the observed wave heights slightly.
Tayfun’s model (T) for large wave heights is consistently
more accurate than N. But, it is totally ignored apparently
because its functional form is more complex and thus less
amenable to analytical and/or practical applications than
N. However, Boccotti’s model (B) is just about as simple as
N, but has not received the attention it probably deserves
either. Thus, one of the present objectives is to review these
models briefly, including two obvious and simple approx-
imations that follow from T. The variability of probability
estimates derived from sample populations of limited size
and its relevance in interpreting the nature of exceptionally
large waves are also considered. Subsequently, all the linear
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models are compared with simulated linear waves and
oceanic data gathered during two severe storms in the
northern North Sea.

Since large waves are nonlinear, the linear models
considered are subsequently modified to include first the
effects of second-order nonlinearities, using the extension
of Boccotti’s (1989, 2000) linear quasi-deterministic theory
to second-order waves by Fedele and Arena (2005). The
resulting second-order models, a fifth-order Stokes–Ray-
leigh model recently proposed by Dawson (2004) and a
second-order version that follows from it are then
compared with simulated nonlinear waves representative
of extreme seas and also with the same North Sea data.

Nearly all past oceanic observations as well as the
present measurements gathered during two exceptionally
severe storms clearly indicate that wave heights are not
affected by nonlinearities. However, some recent analyses
by Janssen (2003, 2005), Mori and Janssen (2006), and
Onorato et al. (2004, 2005, 2006) based on the nonlinear
Schrödinger (NLS) equation and wave-flume experiments
show that occurrences of so-called ‘freak’ waves and wave
heights considerably larger than those typically predicted
with the conventional probability laws can be explained in
terms of third-order nonlinear interactions. Mori and
Janssen (2006) also contend that the distribution of such
wave heights is described by a modified form of the
Gram–Charlier (GC) series dependent solely on the
kurtosis of surface elevations. Dysthe et al. (2005),
Socquet-Juglard (2005) and Socquet-Juglard et al. (2005)
explore the effects of third-order nonlinearities further with
a series of intriguing 3D numerical simulations based on
the Dysthe equation, a higher-order form of the NLS
equation modified for directional waves with large steep-
ness and broader spectra (Dysthe, 1979; Trulsen and
Dysthe, 1996; Trulsen and Stansberg, 2001; Dysthe et al.,
2003). These confirm that an increased density of unusually
large waves does in fact appear in nearly 2D or long-
crested waves initially characterized by relatively narrow-
band spectra. This tends to occur in the absence of
dissipation and surface stresses, and as spectra change
relatively rapidly due to modulational instabilities toward
an equilibrium range proportional to o�4 over high
frequencies. However, the simulations representative of
the more realistic short-crested waves also show clearly
that similar spectral changes do not cause any discernable
aberrations, and the statistical characteristics of the free
surface elevations, wave heights and crests are described
surprisingly well with the presently available linear and
second-order probabilistic models.

The possibility that third-order nonlinearities can modify
the statistical structure of surface waves dramatically under
certain conditions also necessitates a re-examination of the
efficacy of GC type approximations in describing the
distributions of large wave heights, crests and troughs.
Thus, GC models appropriate to third-order waves are
considered, drawing on the formulations devised pre-
viously in Tayfun and Lo (1990) and Tayfun (1994,

2006), and extending these to wave crests and troughs.
All the resulting theoretical expressions are then compared
with the North Sea data, and also with some 3D
simulations from Socquet-Juglard et al. (2005) and 2D
wave-flume data from Onorato et al. (2004, 2005, 2006).

2. Linear waves

2.1. Definitions

Consider linear deep-water waves, and let S represent the
surface spectral density as a function of angular frequency
o. Denoting the ordinary moments of S by
mj ðj ¼ 0; 1; . . .Þ, s � m

1=2
0 corresponds to the root-mean-

square (r.m.s.) surface elevation, and om ¼ m1=m0,

Tm ¼ 2p=om, n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0m2=m2

1Þ � 1
q

and o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=m0

p
¼

om

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2
p

define the spectral average frequency, asso-
ciated wave period, spectral bandwidth and the mean zero
up-crossing frequency, respectively. Further, the r.m.s.
surface gradient is given by m � m

1=2
4 =g with g � 9:8 m=s2.

In general, m251 since m � Oð10�1Þ at most.
Next, let Z and _Z ¼ qZ=qt represent, respectively, the

surface elevation from the mean sea level and its time
derivative at a fixed point as a function of time t. Scaling Z
with s and _Z with m

1=2
2 ¼ so0 allows their normalized

autocorrelation kernels to be expressed as

rðtÞ ¼ hZðtÞZðtþ tÞi ¼ m�10

Z 1
0

SðoÞ cosðotÞ do, (1)

r00ðtÞ ¼ h_ZðtÞ_Zðtþ tÞi ¼ �m�12

Z 1
0

o2SðoÞ cosðotÞ do,

(2)

where r00 ¼ d2r=dt2. The upper ðþÞ and lower ð�Þ
envelopes of r are then given by

�rðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r̂2

q
, (3)

where

r̂ðtÞ ¼ hZðtÞẐðtþ tÞi ¼ m�10

Z 1
0

SðoÞ sinðotÞ do, (4)

and Ẑ; r̂ � Hilbert transforms of Z and r, respectively.
Now, define the dimensionless parameters

rm ¼ rðtmÞ; a ¼ rðt�Þ; b ¼ r00ðt�Þ, (5)

where tm ¼ Tm=2 for simplicity, and t� � the time lag at
which the first minimum of r occurs (Boccotti, 1989, 2000).
These parameters can all be estimated either from a time
series of surface elevations or, somewhat more accurately
and just as simply from the associated frequency spectrum.
For example, consider

SðoÞ ¼
m0

op

u�4 expð�1:25u�4ÞggðuÞ, (6)

whereop � spectral�peak frequency, g � peak�enhancement
coefficient, u ¼ o=op, and gðuÞ � standard JONSWAP
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