
Computers and Chemical Engineering 47 (2012) 202– 216

Contents lists available at SciVerse ScienceDirect

Computers and Chemical Engineering

j ourna l ho me pag e: w ww.elsev ier .com/ locate /compchemeng

SmartGantt – An interactive system for generating and updating rescheduling
knowledge using relational abstractions

Jorge Palombarinia, Ernesto Martínezb,∗

a GISIQ (UTN), Av. Universidad 450, Villa María 5900, Argentina
b INGAR (CONICET-UTN), Avellaneda 3657, Santa Fe S3002 GJC, Argentina

a r t i c l e i n f o

Article history:
Received 2 February 2012
Received in revised form 15 June 2012
Accepted 18 June 2012
Available online 30 June 2012

Keywords:
Batch plant management
Cognitive production systems
Manufacturing control
Rescheduling
Relational reinforcement learning
Uncertainty

a b s t r a c t

Generating and updating rescheduling knowledge that can be used in real time has become a key issue in
reactive scheduling due to the dynamic and uncertain nature of industrial environments and the emer-
gent trend towards cognitive systems in production planning and execution control. Disruptive events
have a significant impact on the feasibility of plans and schedules. In this work, the automatic generation
and update through learning of rescheduling knowledge using simulated transitions of abstract sched-
ule states is proposed. An industrial example where a current schedule must be repaired in response
to unplanned events such as the arrival of a rush order, raw material delay, or an equipment failure
which gives rise to the need for rescheduling is discussed. A software prototype (SmartGantt) for inter-
active schedule repair in real-time is presented. Results demonstrate that responsiveness is dramatically
improved by using relational reinforcement learning and relational abstractions to develop a repair policy.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing global competition, a shift from seller markets to
buyer markets, mass customization, operational objectives that
highlight customer satisfaction and the need to ensure a high level
of efficiency in production systems give rise to a complex shop-
floor dynamics due to unplanned and disruptive events in industrial
environments (Henning & Cerdá, 2000; Zaeh, Reinhart, Ostgathe,
Geiger, & Lau, 2010). Moreover, stringent requirements with regard
to reactivity, adaptability and traceability in production systems,
and by extension in supply chains, are demanded for products and
processes by both suppliers and clients all over the product lifecy-
cle.

In order to deal with the above challenges, is necessary
to achieve higher degrees of flexibility, adaptability, autonomy
and learning capabilities in production systems. Disruption man-
agement, self-reconfiguration and adaptive behavior are key
capabilities in order to fulfill the aforementioned requirements
without sacrificing cost effectiveness, product quality and on-time
delivery. In this context, established production planning and con-
trol systems are vulnerable to unplanned events and intrinsic
variability of a manufacturing environment where difficult-to-
predict circumstances occur as soon as schedules are released to

∗ Corresponding author. Tel.: +54 342 4534451; fax: +54 342 4553439.
E-mail address: ecmarti@santafe-conicet.gob.ar (E. Martínez).

the shop-floor. Equipment failures, quality tests demanding repro-
cessing operations, rush orders, delays in material inputs from
previous operations and arrival of new orders give rise to uncer-
tainty in real time schedule execution. Hence, schedules generated
under the deterministic assumption are often suboptimal or even
infeasible (Li & Ierapetritou, 2008; Vieira, Herrmann, & Lin, 2003;
Zaeh et al., 2010). As a result, reactive scheduling is heavily depen-
dent on the capability for generating and representing knowledge
about strategies for repair-based scheduling in real-time. More-
over, timely producing satisfactory schedules rather than optimal
ones, in reasonable computation time and fully integrated with
enterprise resource planning and control systems is mandatory for
responsiveness and agility (Trentesaux, 2009).

Existing literature related to reactive scheduling mainly aims
to exploit peculiarities of a specific problem structure (Adhitya,
Srinivasan, & Karimi, 2007; Miyashita & Sycara, 1994; Miyashita,
2000; Zhu, Bard, & Yu, 2005; Zweben, Davis, Doun, & Deale, 1993).
More recently, Li and Ierapetritou (2008) have incorporated uncer-
tainty in the form of a multi-parametric programming approach
to generate rescheduling knowledge for specific events. However,
the tricky issue is that resorting to a feature-based representa-
tion of schedule states is very inefficient, and generalization to
unseen schedule states is highly unreliable. Therefore, transferring
heuristics or a rescheduling policy is difficult to unseen schedul-
ing domains, being the user-system interactivity severely affected
due to the need of compiling the repair-based strategy for each
disruptive event separately.

0098-1354/$ – see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compchemeng.2012.06.021

dx.doi.org/10.1016/j.compchemeng.2012.06.021
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:ecmarti@santafe-conicet.gob.ar
dx.doi.org/10.1016/j.compchemeng.2012.06.021

J. Palombarini, E. Martínez / Computers and Chemical Engineering 47 (2012) 202– 216 203

Fig. 1. Repair-based architecture implemented by SmartGantt.

Most of the existing works on rescheduling prioritize reschedul-
ing efficiency using a mathematical programming approach (Li &
Ierapetritou, 2008). However, schedule stability is also an important
objective that must be accounted for when generating a reschedul-
ing policy (Pfeiffer, Kádár, & Monostori, 2007; Rangsaritratsamee,
Ferrell, & Kurz, 2004). Moreover, the type of abstractions used for
representing schedule states and repair actions is of paramount
importance to scale up solutions found for small-size case studies to
industrial applications involving thousands of tasks and hundreds
of resources in an uncertain environment. In particular, humans
can succeed in rescheduling thousands of tasks and resources by
increasingly learning a repair strategy using a natural abstrac-
tion of a schedule situation or state: a number of objects (tasks
and resources) with attributes and relations (precedence, synchro-
nization, etc.) among them. First-order relational representations
enable exploiting the existence of domain objects, of relations (or,
properties) over these objects, and make room for quantification
over objectives (goals), action effects and abstract properties of
schedule states (Blockeel, De Raedt, Jacobs, & Demoen,1999). The
very success of Gantt charts (Wilson, 2003) as a support tool for
(re)scheduling tasks at the shop-floor level is that they provide
a ready visualization of precedence and synchronization relation-
ships between tasks and resources over a common time line.

In this work, a novel real-time rescheduling prototype applica-
tion called SmartGantt based on a relational (deictic) representation
of (abstract) schedule states and repair operator is presented. To
learn a near-optimal policy for rescheduling using simulations of
schedule state transitions (Croonenborghs, 2009), an interactive
repair-based strategy bearing in mind different goals and disrup-
tive events is proposed. To this aim, domain-specific knowledge for
reactive scheduling is generated and updated using relational rein-
forcement learning (RRL) (Džeroski, De Raedt, & Driessens, 2001)
and relational abstractions (De Raedt, 2008).

2. Repair-based (re)scheduling in SmartGantt

Fig. 1 depicts the repair-based architecture implemented by
SmartGantt, embedded in a more general setting that includes
an enterprise resource planning (ERP) system and a manufac-
turing execution system (MES) along with a communication
and control infrastructure. SmartGantt also integrates artificial
cognitive capabilities in resources and processes through a
human–agent–machine interface to favor achieving by design the
type of flexibility and adaptability that are needed in production
systems (Trentesaux, 2009). The mentioned infrastructure con-
sists of the system control level, the process control level and

the planning level. The system control level is responsible for the
physical execution of the production process. The global plan-
ning level administrates, coordinates and dispatches the incoming
orders to the production system, and also involves transport control
and planning/scheduling features. Transport control is responsi-
ble for the material supply to the production system whereas
planning/scheduling capabilities are integrated in SmartGantt. The
respective order data (e.g. slack time), the current boundary condi-
tions (e.g. machine availability) and the overall system utilization
(e.g. capacity utilization) are the prerequisites to decide when an
order is released to the shop-floor. Based on the specification of
the order and information related to operational objectives, tasks,
resources and materials, SmartGantt allocates the respective pro-
duction operations to feasible resources in the production system
and the needed resources are booked based on estimated produc-
tion times. Later on, specific knowledge about resource states (e.g.
capability profiles) as well as the respective product-related (e.g.
quality) and process-related data (e.g. production steps) are used
for feasible schedule modifications (e.g. due to a rework operation)
and the on-going repair sequence optimization is applied to face
unforeseen events (e.g. machine breakdowns) in an autonomic way.

In SmartGantt, rescheduling knowledge about optimal selection
of repair operators towards a goal state is generated through rein-
forcements using a simulator of schedule state transitions. In the
simulation environment, an instance of the schedule is interactively
modified by the learning system which executes control actions
using a sequence of repair operators until a repair goal is achieved.
In each learning episode, SmartGantt receives information from the
current schedule situation or state s, and then selects a repair oper-
ator a, which is applied to the current schedule, resulting in a new
one. The evaluation of the resulting quality of a schedule after a
repair operator has been used by SmartGantt is performed using the
simulation environment via an objective or reward function r(s).
The learning system then updates its action-value function Q(s,a)
that estimates the value or utility of resorting to the chosen repair
operator a in a given schedule state s. Value updates are made using
a reinforcement learning algorithm (Sutton & Barto, 1998), such as
the following Q-learning rule

Q (s, a) ← Q (s, a) + ˛[r + �maxbQ (s′, b) − Q (s, a)] (1)

where s′ is the resulting state of using the repair operator a at the
schedule state s. Accordingly, a repair operator in a given sched-
ule state is chosen based on the optimal policy: ai = �*(si) if ai has
the highest Q-value in the state si. A simulation-based algorithm
to learn the optimal policy is the well-known Q-learning (Sutton &
Barto, 1998; Watkins, 1989).

Based on learning episodes, the Q-learning algorithm updates
these Q-values incrementally while the reinforcement learning
agent interacts with a real or simulated environment. In this work,
the relational variant of Q-learning is used (see next section for
details). The main benefit of applying reinforcement learning tech-
niques, such as Q-learning algorithm, in automated generation of
rescheduling knowledge for improving stability and efficiency of
real-time reactive scheduling is that there is no extra burden on
domain experts, allows online adaptation to a dynamic environ-
ment and make room for relational abstractions that can be used
to deal with large state spaces, e.g. in supply chains or distributed
plant scheduling. By accumulating enough experiences over many
simulated transitions between schedule states, SmartGantt is able
to learn an optimal policy for choosing the best repair operator at
each schedule state in the path to a goal state (repaired schedule).

For repairing a schedule, SmartGantt, is given a repair-based goal
function goal:S → {true, false} defining which states in the sched-
ule are target states in a repaired schedule, e.g. states where Total

Download English Version:

https://daneshyari.com/en/article/172709

Download Persian Version:

https://daneshyari.com/article/172709

Daneshyari.com

https://daneshyari.com/en/article/172709
https://daneshyari.com/article/172709
https://daneshyari.com

