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a b s t r a c t

Ship-generated waves can contribute to the fatigue of offshore structures. This paper presents a

numerical model for evaluating the forces exerted on a nearby fixed structure by ship-generated waves.

The ship waves were modeled using Michell’s thin-ship theory (Wigley waves), and the forces were

computed using a boundary element method in the time domain. The simulation was validated by

comparing its results with those of frequency-domain methods reported in the literature. It was then

applied to calculate the forces exerted on a hemisphere by ship waves varying with the ship’s speed,

dimensions and distance from the hemisphere to the ship’s path. Our results indicate that the ship

waves have enormous effects on offshore structures and are not neglectable.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

As a ship moves in calm water, it generates waves on the free
surface. These waves have been generically named ship waves.
Part of the ship’s power is diverted to generating these waves,
which carry away energy as they propagate outwards. The loss of
energy can be expressed as a resistance variously called ship wave

resistance or wave-making resistance. Ship waves are complicated
in nature, so the study of ship waves and wave-making resistance
remains a relevant research topic.

As modern ships become larger, the dangers of ship waves are
receiving more attention. Some enormous effects will be induced
by the ship waves. The waves generated by a ship may produce
violent motions of nearby smaller ships, affect the comfort of their
passengers or delay the normal loading and unloading operations
of the smaller vessels. A much smaller ship may even lose stability
and be capsized by the waves. Several cases testify to the
importance of these two effects. Within Victoria Harbor of Hong
Kong, for instance, multiple ship waves have been reported as
high as 1.5 m above the mean water level. In October 2005, a tour
yacht (Ethan Allen) on Lake George was capsized by a passing
larger ship. Twenty passengers lost their lives in this tragedy.
Herein, the detrimental effects of ship waves, which have been
ignored in the past, should be seriously considered in Ocean
Engineering.

No numerical studies have mentioned the action of ship waves
on marine structures; only river banks and breakwaters have been

considered (Weggel and Sarensen, 1986; Chen and Sharma, 1997,
2003). Therefore, a numerical method, which can be used to
simulate the action of ship waves on arbitrary fixed structures, is
given in present paper.

This work employs a time-domain Green’s function (the Kelvin
source boundary element method) to compute the wave forces
exerted on fixed structures. This method has been widely used in
solving diffraction and radiation problems and wave-action
problems (Lin and Yue, 1990; Sen, 2002; Singh and Sen, 2007).
The Kelvin source method avoids setting panels on the free
surface, greatly reducing CPU time. However, it is difficult to
rapidly evaluate a time-domain Green’s function (Stoker, 1957;
Wehausen and Laitone, 1960) with satisfying precision. Many
efforts have been done to develop accurate and efficient
numerical methods for this purpose (e.g. Newman, 1985, 1990;
Beck and Liapis, 1987; Magee and Beck, 1989; Huang, 1992). This
paper accelerates the calculation by tabulating the Green’s
function and its derivatives, interpolating their values on the grid
during run time.

The validity of our simulation is demonstrated on simple
geometries embedded in a regular wave field, where the output
can be compared with present frequency domain results. Later on,
the regular wave field is replaced with the waves from a Wigley
ship. The numerical model is used to determine how the action of
ship waves was influenced by a vessel’s speed, dimensions, and
distance from the structure.

The paper is organized as follows: Section 2 presents the
theoretical principles behind our numerical time-domain method.
Section 3 describes our method for accelerating the calculation
of the time-domain Green’s function. In Section 4, two simple
geometries are computed to validate the method. Section 5
reports our numerical results for ship waves in more realistic
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cases and describes how the force of ship waves on a hemi-
sphere evolves under various factors. Our conclusions are given in
Section 6.

2. Numerical method

The fluid is assumed to be inviscid and incompressible, and its
motion is irrotational. The fluid domain is bounded by the free
surface and the body surface, but is unbounded in the horizontal
directions. The fluid depth is taken to be infinite. As shown in
Fig. 1, the coordinate system x, y, z is fixed; the x- and y-axes lie in
the plane of the undisturbed free surface, the x-axis is parallel to
the ship’s path, and z-axis points upwards.

2.1. Initial boundary value problem

The problem is defined by the following control equations,
boundary conditions, and initial conditions:

½L� : r2FS
ðx; y; z; tÞ ¼ 0;

½F� :
@2FS

@t

 !
þ g

@FS

@z

 !
¼ 0; z ¼ 0;

½B� :
@F
@n
¼ 0;

½R� : rFðx; y; z; tÞ ! 0; x2 þ y2 !1 or z!�1;

½I� : FS;FS
t ¼ 0; t ¼ 0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(1)

The total velocity potential is F ¼ FI+FS, where FI and FS are
the incident potential and scattering potential, respectively. The n

is the unit normal vector of the body surface.

2.2. Incident potential

The velocity potential of waves generated by a Wigley ship will
be adopted as the incident potential in the present numerical
model. Thus, the thin-ship method is employed to predict the ship
waves. The hull shape of the Wigley ship can be described by

f ðx; zÞ ¼
B

2
1�

4x2

L2

 !
1�

z2

H2

 !
, (2)

where L is the length, B is the beam and H is the draft. Obviously,
�L/2pxpL/2 and �Hpzp0. Using the thin-ship theory, the
velocity potential of the Wigley ship can, therefore, be written as

FI
ðx; y; zÞ ¼ �

U

2p

ZZ
s0

@f ðx; zÞ
@x

Wðx; y; z; x;0; zÞdxdz, (3)

where s0 is the wet surface of the Wigley hull. Following Noblesse
(1977, 1978), the W denotes the fundamental wave potential of the
Kelvin Green’s function. More generally, the Green’s function has
two parts: the fundamental near-field potential and the funda-

mental wave potential. It is assumed that the source and field point
has a sufficient distance, so that the influence of the fundamental
near-field potential vanishes. After integrating over the Wigley
hull for the wave height of ship waves in the free surface, the well-
known Kelvin wave system for Wigely hull is obtained and shown
in Fig. 1.

2.3. Scattering potential evaluation

Using Green’s third identity and the time-domain Green’s
function, the following integral equation determines the velocity

potential on the body surface:
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where O(Q) is the solid angle containing the fluid domain
and G(t) is the intersection of the instantaneous body surface
Sb(t) and the free surface Sf(t) (a closed curve). The VN is the
velocity of a point on G(t) and governs the occurrence of the
line integral term. For example, the value of VN is zero for a
linearized problem without forward speed, in which case G(t) is
invariant. For a submerged body, the line integral will vanish.
The G0 and Gf are the instantaneous and memory terms of the
time-domain Green’s function, respectively (see Appendix A).
The instantaneous term G0 is evaluated using the method of
Hess and Smith (1964). The memory term Gf and its derivatives,
which should be evaluated many times for calculating the
convolution integrals, are evaluated using the method shown in
Appendix A.

To solve the integral equation, the body surface is dis
cretized into plane polygons (panels) over which the singularity
distributions are assumed to be constant. The time domain
is divided into uniform steps, and the convolutions are evalu-
ated using a trapezoidal rule. The discretized form of Eq. (4) is
given by
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In the above equation, i, j ¼ 1,y, NB where NB is the number of
panels in the body surface. The time index k runs from 0 to NT�1
and the index m runs from 0 to NT�k�1 (t ¼ kDt, t ¼ mDt, where
Dt is the time step). And the NL is the number of line elements at
the waterline. An adequate time step can substantially reduce the
number of Green’s function evaluations without compromising
the precision of the numerical results (Ferrant, 1991). Then Eq. (5)
can be written as a linear system of equations of the form
[A]{F}S

¼ {B}. Through solving for the unknown scattering
potential FS by Gaussian elimination, the total velocity potential
can be obtained.
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