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a b s t r a c t

This paper describes a method to identify the parameters of the dynamic model of a fixed offshore

platform subjected to wind-generated random waves using its stationary response. The structure is

modeled as a single degree of freedom system. The parameters identified are the damping coefficient,

the natural frequency, and the excitation. In addition, the moment and force acting on the foundation

are also identified. The method uses the random decrement signature as a tool to identify the

parameters in the equation of motion. Excellent agreements were obtained between the predicted and

actual values of the parameters as well as for the reaction and moment at the platform’s foundation. The

method can be applied without any interruption to the operation of the offshore structure. The method

is easy to apply, and uses inexpensive motion measurement instruments. The estimated force and

moment can be used as a tool for an on-line foundation check.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Early detection of fatigue cracks occurring in offshore platform
members is critical to the safe, efficient, and economic operation
of the platform. Several approaches have been suggested to
rationalize inspection of offshore platforms using reliability-based
methods (Onoufriou, 1999; Pillai and Prasad, 2000) and damage
detection techniques (Viero and Roitman, 1999). Offshore plat-
forms subjected to random waves are usually modeled as multi-
degree of freedom systems. The forces caused by the random
waves can excite certain vibratory modes corresponding to
frequencies near or equal to wave frequencies. A number of
vibration-based damage detection techniques have also been
suggested (Budipriyanto et al., 2007). Other methods which
depend on the measurement of the vibratory response of
structures only can also be used e.g. operational modal analysis
technique (Brincker et al., 2001).

The random decrement (RD) technique has been successfully
applied to multi-degree of freedom systems to predict early
damage occurrence (Zubaydi et al., 2000). The Random decrement
is an averaging technique that can be used to extract the free
decaying response of a vibrating body from its random excited
stationary response. It was first introduced by Cole (1968) to
identify the damping of an aerospace structure using stationary

random response. The Random decrement can be obtained
without a prior knowledge of the excitation forces under the
assumption that the forces are zero mean, stationary Gaussian
random process. Owing to its efficiency and simplicity in
processing vibration measurements and the lack of requirements
for input excitation measurements, the method is applied
extensively to detect damage in civil and offshore structures
(Yang et al., 1980, 1984; Zubaydi et al., 2002; Budipriyanto et al.,
2007). The method can also be used to identify mode shapes and
frequencies of multi-degree of freedom systems (Ibrahim and
Mikulcik, 1977). Vandiver et al. (1982) showed that the random
decrement can be obtained from the auto-correlation function by
multiplying the auto-correlation function by the threshold or
triggering level. Haddara (1992) extended the random decrement
technique to nonlinear systems. Zubaydi et al. (2000, 2002) and
Budipriyanto et al. (2007) used the random decrement signature
to identify the damage in the side shell of a ship.

2. Equation of motion

The response of a single degree of freedom linear system is
governed by the following basic dynamic equation:

m€xðtÞ þ c _xðtÞ þ kxðtÞ ¼ FðtÞ (1)

where m stands for the total virtual mass, c for the damping, k for
the stiffness, t for time, and F(t) is the external force. The total
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virtual mass is the sum of the physical and the hydrodynamic
added mass of the system.

Eq. (1) can be normalized with respect to the total virtual mass,
m as

€xðtÞ þ
c

m
_xðtÞ þ

k

m
xðtÞ ¼

FðtÞ

m
(2)

or

€xðtÞ þ 2ooz_xðtÞ þo2
oxðtÞ ¼ f ðtÞ (3)

where oo is the natural frequency (rad/s), z is the damping ratio,
f (t) is the force per unit total virtual mass, and x(t) is the response
of the system. A dot over the derivative indicates differentiation
with respect to time.

The random excitation f(t) is assumed to satisfy the following
conditions:

hf ðtÞi ¼ 0

hf ðtÞf ðt þ tÞi ¼ codðtÞ (4)

d is the Dirac delta function and co is the variance of the
excitation.

The following change of variables is used:

y1 ¼ x; y2 ¼ _x (5)

Using the change of variables (5) in Eq. (3), one gets

_y1 ¼ y2

_y2 ¼ �2oozy2 �o2
oy1 þ f ðtÞ (6)

It can be shown (Haddara, 2006) that the conditional prob-
ability density function P(Y,t|Yo) governing the vector random

process, YðtÞ ¼
y1

y2

( )
, satisfies the Fokker–Planck equation given

by

@P

@t
¼ �

@

@y1

ðy2PÞ þ
@

@y2

½y1f2zooy2 þo2
oy1gP� þ

co

2

@2P

@y2
2

(7)

The symbol P is used in place of P(Y,t|Yo). Solution of Eq. (7)

subject to the initial condition lim(P(Y,t|Yo) ¼ d(t) as t-0 yields an
expression for the conditional probability density function which
governs the process Y(t). Instead of solving Eq. (7), one can use it
to derive expressions that describe the propagation of the mean
and variance of the process, Y(t) as functions of time.

3. Equations of the means and variances

By multiplying both sides of Eq. (7) by y1 and y2, respecti-
vely, and integrating the whole equation over the complete
domain of the variables y1 and y2, it can be shown that

(See Appendix A)

_m1 ¼ m2

_m2 ¼ �h2zooy2 þo2
oy1i (8)

where m1 and m2 stand for the mean values of the displacement
and the velocity, respectively.

Multiplying Eq. (7) by y1
2, y2

2 and y1y2, respectively, and
integrating the whole equation over the complete domain of the
variables y1 and y2, we get (See Appendix A)

_n11 ¼ 2n12

_n22 ¼ �2h2zooy2
2 þo

2
oy1y2i þ co

_n12 ¼ n22 � h2zooy1y2 þo2
oy2

1i (9)

where n11 is the variance of the displacement, n22 is the variance
of the velocity, and n12 is the covariance of the displacement and
velocity. Eqs. (8) and (9) describe the means and the variances of
the displacement and velocity as functions of time. These
equations will be used for the identification of the parameters
in the equation of motion of the offshore structure.

Eq. (8) can be combined in one equation as

€mþ 2zoo _mþo2
om ¼ 0 (10)

where m is the mean value of the displacement. Eq. (10) shows
that the free decay motion can be derived from the stationary
random response. This is the equation of the random decrement.

4. Random decrement signature

Eq. (10) shows that the random decrement can be used to
describe the free decay response of the system. The advantage of
this approach is that one can obtain the free response from the
stationary random response of the system. To obtain the random
decrement from the stationary random response, the response is
divided into a number of segments, N, each of length t. All of these
segments should have the same initial condition, xi(ti) ¼ xs ¼ con-
stant, i ¼ 1,y, N. The initial condition is called the triggering
value. These segments will also have initial slopes with alternat-
ing signs. The ensemble average of the N segments yields the
random decrement as shown in Fig. 1.

This approach can be expressed mathematically using the
following equations:

xðtÞ ¼ 1

N

XN

i¼1

xiðti þ tÞ (11)

where xi(ti) ¼ xs for i ¼ 1, 2, 3,y, N, ẋi(ti)X0 for i ¼ 1, 3, 5,y, N�1,
ẋi(ti)p0 for i ¼ 2, 4, 6,y, N.
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Nomenclature

c damping coefficient (N s/m)
fr natural frequency (Hz)
d logarithmic decrement
F(t) excitation force (N)
Hs significant wave height (m)
k stiffness (N/m)
m mass (kg)
ODE ordinary differential equation
P(Y,t|Yo) conditional probability density
RD random decrement
Tz average zero up crossing period (s)

x, ẋ, ẍ displacement (m), velocity (m/s) and acceleration (m/
s2), respectively

xs triggering level
d Dirac delta function
z non-dimensional damping coefficient
m1, m2 mean values of displacement and velocity, respec-

tively
n11, n22 the variance of displacement and velocity, respec-

tively
s2 variance
co variance of excitation
oo, od undamped and damped natural frequencies (rad/s),

respectively
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