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a  b  s  t  r  a  c  t

Due  to  the  complexity  of metabolic  regulation,  first-principles  models  of  bioreactor  dynamics  typically
have  built-in  errors  (structural  and  parametric  uncertainty)  which  give  rise  to the  need  for  obtaining  rel-
evant data  through  experimental  design  in  modeling  for  optimization. A  run-to-run  optimization  strategy
which  integrates  imperfect  models  with  Bayesian  active  learning  is  proposed.  Parameter  distributions  in  a
probabilistic  model  of bioreactor  performance  are  re-estimated  using  data  from  experiments  designed  for
maximizing information  and  performance.  The  proposed  Bayesian  decision-theoretic  approach  resorts
to probabilistic  tendency  models  that explicitly  characterize  their  levels  of  confidence.  Bootstrapping  of
parameter distributions  is used  to  represent  parametric  uncertainty  as  histograms.  The  Bajpai  & Reuss
bioreactor  model  for  penicillin  production  validated  with  industrial  data  is  used  as  a  representative  case
study. Run-to-run  convergence  to an  improved  policy  is  fast despite  significant  modeling  errors  as  long
as data  are  used  to revise  iteratively  posterior  distributions  of  the  most  influencing  model  parameters.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Most bioprocess optimization techniques are model-based (De
Tremblay, Perrier, Chavarie, & Archambault, 1993; Frahm, Lane,
Märk, & Pörtner, 2003; Guthke & Knorre, 1981; Lim, Tayeb, Modak,
& Bonte, 1986; Riascos & Pinto, 2004), and since accurate mod-
els are rarely available, experimental optimization of the operating
policy is a difficult problem to be addressed for a successful scale-
up. The best use of an imperfect first-principles model through
proper handling of its inherent uncertainty is a challenging issue
for fast productivity improvement of innovative fed-batch fermen-
tations using data sampled from a small number of production runs.
Bioreactors are engineered systems in which the activity of living
cells is harnessed to produce an antibiotic, antibody, protein, a tis-
sue or a host of other products of considerable impact on human
life (Anesiadis, Cluett, & Mahadevan, 2008; Jain & Kumar, 2008;
Ramkrishna, 2003). For maximum productivity, cells in a bioreac-
tor must be maintained in an appropriate state of metabolic activity
by tightly controlling conditions in the abiotic phase. The main
problem in bioreactor modeling for optimization is that biolog-
ical activity occurs in metabolic pathways which are controlled
by switches through built-in regulatory networks (Geng & Yuan,
2010). Due to the complexity of metabolic regulation and limited
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measurements, first-principles models of bioreactor dynamics can
only capture the qualitative tendency of sampled state variables
such as biomass, substrate and product concentrations (Martínez,
Cristaldi, & Grau, 2009; Tsobanakis, 1994). Hence, without bias-
ing data gathering by increasingly improving the operating policy,
bioreactor performance predictions are too uncertain and unreli-
able in quantitative terms to be useful for productivity optimization
(Bonvin, 1998; Martínez & Wilson, 2003; Schenker & Agarwal,
1995). As a result, migration from laboratory conditions to pro-
duction runs is often made with high levels of uncertainty about
the degree of optimality of an operating policy (Terwiesch, 1995;
Terwiesch & Agarwal, 1995). Consequently, a very conservative
and sub-optimal operating policy is repeatedly applied to indus-
trial bioreactors seeking reproducibility rather than improvement
(Martínez & Wilson, 2003).

Run-to-run optimization of the operating policy for a fed-
batch bioreactor using data gathered in production runs can be
approached using two  alternatives: (i) a systematic model-based
iteration strategy, or (ii) a heuristic procedure using somehow past
operating experience for modifying the policy directly. The heuris-
tic optimization approach based on intuitively tweaking input
profiles is very inefficient, often leads to sub-optimal solutions, and
it cannot guarantee neither systematic performance improvement
nor convergence to a near optimal policy. An interesting step in this
direction has been proposed in Smets, Claes, November, Bastin, and
Van Impe (2004) by starting from a model-derived operating pol-
icy and optimal profiles of the key state variables. Then, the optimal
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Nomenclature

Fin Inlet flow rate (L h−1)
Fevap outlet flow rate due evaporation (L h−1)
J performance index
m(t)  time-dependent control variables.
p(�i) prior distribution of the ith model parameter.
p(�|x) posterior probability distribution for parameters.
P penicillin concentration (as potassium salt) (g

PenGK L−1)
Q global sensitivity matrix
S substrate concentration (g L−1)
t time (h)
tf final time of an experimental run (h)
tsp vector of sampling times in an evaluation experi-

ment
V culture broth volume (L)
x(t) vector of state variables
x(ti) bioreactor sampled state vector at a given time.
X biomass concentration (g-DW L−1)
Xd death biomass concentration (g-DW L−1)
Xv viable biomass concentration (g-DW L−1)
u utility function
w time-invariant control variables

Parameters
A feeding profile parameter (L h−2)
B feeding profile parameter (h−1)
C feeding profile parameter (h−2)
Tfeed initial time for fed-batch operation (h)

Greek symbols
� feasible set of model parameters

 ̌ set of parameters describing time-varying inputs
ϕ vector of operating policy parameters
� specific biomass growth rate (h−1)

solution is implemented in the form of a model-independent sub-
optimal strategy by using a modified (semi-empirical) control
function, which includes reduced terms based on heuristic obser-
vations. More effective, though, is designing dynamic experiments
to extract useful information from policy evaluation runs. In this
way, the operating policy is improved by introducing relevant data
for optimization in an imperfect model. This approach does not
rely on expert knowledge, but requires to model available data
carefully. For model-based policy optimization to be successful it
is mandatory to re-estimate selectively the more sensitive model
parameters using optimal experimental design techniques in data
gathering (Martínez et al., 2009).

An approach for model-based heuristic optimization of oper-
ating policies has been proposed in Maria (2004, 2007) and
successfully applied to d-glucose oxidation. This author argues that,
by using reduced order (low complexity) bioreactor models and
through semi-empirical optimal control functions, it is possible to
lower computational costs and experimental efforts necessary to
identify and verify all model parameters and reaction steps under a
wide range of operating conditions and at different time scales. The
reduced order model is based on a simplified enzymatic kinetics,
requires a small number of on-line measurements for model update
and a few parameters are used to adjust the control function. The
solution found is implemented in the form of a model-independent
sub-optimal strategy based on a control function selected from
a library. However, the heuristic optimization approach is highly
problem-dependent (e.g., enzyme oxidation) since it mostly relies

on an intricate understanding of the characteristics of the biopro-
cess behavior and human judgment for defining an improved policy
while addressing the dilemma of knowledge exploitation versus
exploring untried operating conditions. This dilemma is at the very
heart of modeling for optimization with imperfect models. When
a reduced order model is used for policy improvement you cannot
improve its parametric precision comprehensively. Thus, the model
is only a means to find better policies at the cost of biasing data gath-
ering in the most profitable region of operating conditions. Lacking
a conceptual framework for policy optimization, generalization and
incorporation of uncertainty into the decision-making process, the
heuristic optimization approach is costly in terms of both time
and money. Expert knowledge can be difficult to obtain, expen-
sive, or is simply not available. Moreover, no systematic reduction
of model uncertainty is made as more experimental data is avail-
able which prevents guaranteeing steady policy improvement and
convergence toward a near-optimal solution.

In the attempt to compensate for a significant process-model
mismatch, optimal operation under uncertainty requires using
measurements from carefully designed experiments to improve
on a run-to-run basis from a cautious (sub-optimal) policy. This
model-based policy optimization approach consists of iteratively
using new measurements to increasingly reduce parametric uncer-
tainty in a tendency (imperfect) model and later resorting to the
updated model for policy improvement (Martínez et al., 2009).
A “tendency model” is a low order, nonlinear, dynamic model
that approximates the stoichiometry and kinetic relationships of
a bioprocess using the available plant data along with fundamen-
tal knowledge of the process characteristics (Bonvin & Rippin,
1990; Filippi, Bordet, Villermaux, Marchal-Brassey, & Georgakis,
1989; Fotopoulos, Georgakis, & Stenger, 1998; Georgakis, 1995;
Uhlemann, Cabassud, LeLann, Borredon, & Cassamatta, 1994). Oper-
ating policies based on over-confident first-principles models often
fail to yield productivity improvement due to a lack of parametric
precision and structural errors.

For Bayesian optimization with tendency models, not only a
bioreactor model for policy improvement is required, but it is also
important that the model faithfully describes its own accuracy
to treat uncertainties in a principled way. Humans do something
similar: as it is argued in (Körding & Wolpert, 2004, 2006), when-
ever humans have only little experience, they employ an internal
forward model for predictions and average over the uncertainty
when extrapolating and making decisions. The essential character-
istic of Bayesian methods is their explicit use of probability theory
for quantifying uncertainty in inferences based on statistical data
analysis. Without any notion of uncertainty, the model-optimized
policy would be too confident and claims exact knowledge, which it
actually does not have. Representation and incorporation of model
uncertainty in run-to-run optimization is particularly important in
the early stages of bioprocess scale-up when the available data set
is very sparse and has been obtained for a wide range of operating
conditions. For Bayesian optimization of bioreactors, the novel con-
cept of a probabilistic tendency model that integrates first-principles
and constitutive laws with probability distributions for describing
parametric uncertainty is proposed.

In this work, a general and fully Bayesian decision-theoretic
framework for policy optimization in innovative bioprocesses is
presented. In the case of only few production runs with a full-scale
bioreactor, the problem of dealing with fairly limited experience
to improve the policy is successfully addressed using Bayesian
active learning. In Bayesian inference, scarce experimental data are
used to learn a probabilistic model of a bioreactor dynamics by
updating parameter distributions. Probabilistic tendency models
are able to represent and to quantify their own uncertainty for safe
generalization of available experience to untried operating condi-
tions. Thus, uncertainty is explicitly accounted for in run-to-run
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