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a b s t r a c t

Predicting the performance of chemical reactions with a mechanistic model is desired during the devel-
opment of pharmaceutical and other high value chemical syntheses. Model parameters usually must be
regressed to experimental observations. However, experimental error may not follow conventional dis-
tributions and the validity of common statistical assumptions used for regression should be examined
when fitting mechanistic models.

This paper compares different techniques to estimate parameter confidence for reaction models
encountered in pharmaceutical manufacturing, simulated with either normally distributed or experi-
mentally measured noise. Confidence intervals were calculated following standard linear approaches
and two Markov Chain Monte Carlo algorithms utilizing a Bayesian approach to parameter estima-
tion: one assuming a normal error distribution, and a new non-parametric likelihood function. While
standard frequentist approaches work well for simpler nonlinear models and normal distributions, only
MCMC accurately estimates uncertainty when the system is highly nonlinear, and can account for any
measurement bias via customized likelihood functions.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Pharmaceutical and fine chemical process development fre-
quently involves reaction analysis to fully characterize and predict
process performance. Using a variety of different analytical tools,
scientists collect time-dependent measurements of process param-
eters (temperature, volume, concentration, etc.) and analyze this
data to calculate the underlying fundamental chemical kinetics.
The pharmaceutical industry is rapidly adopting the concept of
Quality by Design (QbD), wherein the quality of pharmaceutical
products is assured by a rigorous understanding of the relationships
between manufacturing conditions and final product characteris-
tics (Garcia, Cook, & Nosal, 2008). Regulatory guidance from the
Tripartite International Conference on Harmonization (ICH) Q8
(R2) provides definitions of design space and quality attributes for
pharmaceutical manufacturing processes. The combination of the
model, parameter, and measurement uncertainty defines the size
and shape of the process design space (Hallow et al., 2010; Peterson,
2008, 2010). Understanding the rates of desired and undesired
reactions is not only good engineering practice, but can define
the experimental planning that ultimately determines the accept-
able processing ranges for pharmaceutical manufacturing which
must be submitted to industry regulators. While it is desired to
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create a mechanistic model for the system of reactions, it is impor-
tant to minimize the impact of experimental error on regressed
parameters. Often in pharmaceutical process development, time
and reagents are limited. Therefore, a finite amount of data is
collected during process development and the resulting model
parameters have an inherent uncertainty that must be considered
when proposing a model-based process design.

In the case of chemical concentrations, kinetic data can be col-
lected from tools such as high performance liquid chromatography
(HPLC) or in-line Fourier transform infrared (FTIR) spectroscopy
by first preparing concentration standards and then correlating
the analytical output to known concentrations. For HPLC this cal-
ibration curve conventionally uses a linear correlation between
chromatogram peak area and concentration. Industrial guidance,
for example from the United States Pharacopeal Convention (USP)
Chapter 1225, provides a definition of linearity for an analysis
method, ideally for results proportional to concentration, but does
allow for “well-defined transformations” of data for analytical tech-
niques if warranted. For FITR, a chemometric model is built using
partial least squares (PLS) regression of infrared spectra to con-
centration (Kramer, 1998). Once these machine calibrations are
created, unknown samples can be analyzed. The measurement
error of these samples may be assumed to be due to the inher-
ent error of the calibration as long as the sample preparation and
machine configuration are consistent between samples. Unfortu-
nately, once these calibrations are created and deemed acceptable,
additional information contained in the goodness of fit and model
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Nomenclature

Variables and functions
a metropolis acceptance probability
[A] concentration of chemical A
[B] concentration of chemical B
[C] concentration of chemical C
[D] concentration of chemical D
E() expectation value
F linearized design matrix
F˛

p,n−p F-statistic
f() model for concentration as a function of time
g() indicator function
L() likelihood function
lookup() lookup table query
N() normal distribution
n number of measurements
Ns total number of Monte Carlo iterations
Nbins, j number of histogram bins for parameter j
Nchain number of simultaneous Markov chains (2)
p number of parameters
p() probability density function
R ideal gas constant
S() sum of squares error
T temperature
Tref reference temperature (298 K)
t time
t˛/2
n−p Student’s t-distribution significance level

U() uniform distribution
u random sample on U(0, 1)
w weighting factor
Y vector of chemical concentration measured over

time

Subscripts and superscripts
0 concentration at time zero
b histogram bin index (b = 1, 2, . . ., Nbins)
i timepoint measurement index (i = 1, 2, . . ., n)
j parameter index (j = 1,2, . . ., p)
LS least squares optimum
m model index (1, 2, 3, 4)
k Monte Carlo iteration (k = 1 . . . Ns)
optimum optimum value that maximizes the model likeli-

hood function
prop proposed value
true exact observation without error

Greek variables
˛ confidence level for t or F distribution
ε random error
�bin width of histogram bin
� standard deviation
� vector of parameters in model
� matrix of proposed parameter values accepted by

MCMC

residuals is typically ignored. If the majority of experimental error
can be determined by preparing and analyzing replicate samples,
there is an opportunity to use this measurable error in kinetic
parameter regression.

Mechanistic or empirical reaction models can be built by
regressing a kinetic data set to a proposed system of equations
using linear or nonlinear regression techniques (Dowdy, Weardon,
& Chilko, 2005; Seber & Wild, 2005) typically involving least

squares regression. In the development of least squares regres-
sion techniques and their associated confidence intervals, it has
been assumed that errors were independent and identically dis-
tributed (Dowdy et al., 2005). Because measurement error can be
determined using replicate samples of reference standards, and
adequate models can often be selected when the reaction mech-
anism is known, much of the overall uncertainty lies in the quality
of parameter estimation. Frequently, the error of a measurement
technique is described not in absolute concentration, but in terms
of percent, an example of heteroscedastic error. For mean-centered
heteroscedastic error, weighted least squares is commonly used
when the error distribution is known. Once the best fit parameters
are found using ordinary or weighted least squares, basic parame-
ter confidence calculations rely on a Taylor series linearization of
the model at this best fit condition. Despite abundant warnings on
using linearization methods to estimate confidence intervals in the
literature, their prominence in many statistical packages encour-
ages their use for potentially inappropriate models. Increasingly
though, these assumptions for nonlinear chemical kinetic models
are being challenged, but only a few authors have empirically deter-
mined their accuracy on a case-study basis (Donaldson & Schnabel,
1987; Sin, Meyer, & Gernaey, 2010).

Estimating parameter uncertainty for nonlinear models has
been studied extensively by other authors. Approaches can gener-
ally be collected into two groups. The classical approach developed
by statisticians such as Fisher, Pearson, Neyman (Neyman, 1937),
and others to determine confidence that an observation can
be repeated from a given model will be referred to here as
the frequentist approach. This general approach leads to several
well-established methods for measuring parameter confidence,
including now-ubiquitous linear least squares approaches. For
highly nonlinear models, other techniques such as model trans-
formations, scaling, likelihood maximization, likelihood ratio, and
lack of fit methods can be used to more accurately calculate con-
fidence regions compared to linear or quadratic approximations
(Bates & Watts, 1981; Donaldson & Schnabel, 1987; Seber & Wild,
2005), but these techniques require a closed form model to manip-
ulate. Rooney and Biegler (2001) applied the likelihood ratio test to
solve chemical engineering design problems. Confidence intervals
for nonlinear parameter estimation have been used for activation
energy estimation from experimental data, using corrections to
Student’s t-distribution (Cai, Han, Chen, & Chen, 2011; Vyazovkin &
Sbirrazzuoli, 1997). Monte Carlo approaches have also been used to
determine regression confidence in chemical kinetic parameters by
repeatedly randomizing and regressing data (Alper & Gelb, 1990).
A model for cellulose hydrolysis was analyzed by Monte Carlo to
determine the uncertainty of model predictions (Sin et al., 2010).
Such rigorous analyses are required to determine if a model is fit-
for-purpose when parameters cannot be uniquely estimated from
experimental data.

As an alternative to frequentist methods, the Bayesian approach
aims to determine the credibility of a model given an observation.
This approach has been applied to chemical kinetic models (Box &
Tiao, 1973) and multiple-response data sets (Stewart, Caracotsios, &
Sorensen, 1992; Stewart, Shon, & Box, 1998). To evaluate the credi-
bility of model parameters, Markov Chain Monte Carlo (MCMC) has
emerged as a powerful solution method for Bayesian inference by
calculating parameter likelihood on a random walk through param-
eter space. MCMC using unbiased heteroscedastic error expressions
for chemical reaction data has been applied to model selection (Blau
et al., 2008; Hsu et al., 2009). Coleman and Block (2006) exploited
informative priors to estimate fermentation model parameters
using MCMC. Klinke (2009) demonstrated the use of adaptive
MCMC (Haario, Saksman, & Tamminen, 2001) to evaluate complex
cellular signaling networks, simultaneously regressing 34 param-
eters given experimental data. These methods using MCMC with
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