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a b s t r a c t

Chemical engineering is a rich area when comes to nonlinear systems of equations, possibly with multiple
solutions, (unbounded) discontinuities, or functions which become undefined in terms of real values. In
this work, a new approach is proposed for finding all real solutions of such systems within prescribed
bounds. A modified affine arithmetic is used in an interval Newton method plus generalized bisection. A
special constraint propagation is used to automatically remove regions where the functions are undefined
for real numbers. Results for test problems have shown that the proposed implementation requires less
computation effort than similar methods available in the literature for small continuous systems. Further,
the method is able to find all real solutions of nonlinear systems of equations even when there are
unbounded discontinuities or when functions become undefined within the given variable bounds.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Solving systems of nonlinear equations is a fundamental task in
many mathematical, engineering, and science applications. Chemi-
cal engineering, in particular, is a rich area when comes to nonlinear
systems of equations. Usually, the complex physical phenomena
present in chemical processes can only be properly described by
systems of nonlinear equations. Even though the variables involved
are usually limited to a valid physical domain, the model functions
can be discontinuous (unbounded or not) or can become undefined.

When solving these equations, we are usually interested in find-
ing at least one solution and a fundamental problem arises when no
solution is found. Was no solution found because of convergence
failure or does the model actually have no possible solution? In this
regard, structural analysis can be very helpful in identifying struc-
turally singular models and in aiding the user to fix the defective
model (Soares & Secchi, 2012). But, unfortunately, structurally non-
singular models can still pose convergence problems for numerical
methods. Further, if there are multiple solutions, have all possible
solutions been enumerated? In some cases, finding all solutions is
mandatory, in other cases, trivial or unphysical solutions need to
be avoided.

A large body of methods have been proposed in the literature for
solving systems of nonlinear equations. According to Maranas and
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Floudas (1995), these methods may roughly be classified into three
classes: (i) Newton and quasi-Newton type methods; (ii) homotopy
continuation type methods; and (iii) interval-Newton methods. In
the work of Rahimian, Jalali, Seader, and White (2011) a list with 7
different categories of methods is suggested. In the present work,
no attempt to systematically review all methods is made. Some
recent advances and papers found to be relevant in different cate-
gories follow below.

Newton-like methods are very common, mainly because they
can be very computationally efficient and achieve super-linear con-
vergence in the neighborhood of the solution. However, there is
no guarantee for convergence and the methods tend to fail if the
initial guess is poor or if singular points are encountered. These
methods also fail if one or more functions become undefined (e.g.
the logarithm of negative values). In Lucia and Taylor (1992) and
Lucia (2000) the authors studied and reviewed the behavior of
complex domain numerical methods. By considering the complex
domain, it was found that improved convergence is achieved. Either
real- or complex-valued solutions can be found. In Stuber, Kumar,
and Barton (2010) the authors also comment on some attempts
to enlarge the neighborhood of convergence for Newton-like
methods.

The main idea of homotopy continuation methods is to gradu-
ally approach a solution of the equation set from a starting point
which satisfies another (simpler) system of equations (Malinen &
Tanskanen, 2010). A problem common to homotopy methods is
that variable values might violate the prescribed bounds during
the solution, possibly making variables to assume unphysical or
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complex values. This is particularly a problem for several chemical
engineering models containing functions that may be discontinu-
ous or become undefined in terms of real values. In order to remedy
this, Paloschi (1995) and Paloschi (1998) suggested bounded homo-
topies, extended later by Malinen and Tanskanen (2008) and
Malinen and Tanskanen (2010). Even with these modifications, a
potential issue with this category of methods is the determination,
in a problem independent way, of multiple solutions that lie on
separate homotopy path branches (Malinen & Tanskanen, 2010).

Another class of method, known as terrain methodology, was
recently proposed by Lucia and Feng (2002) and Lucia and Feng
(2003) for the global solution of nonlinear models. The solution of
the system of equations f is obtained in a least-squares sense by the
minimization of fT f. The main ideas of terrain following are based
on the fact that neighboring stationary points of the least-squares
function are connected along valleys under the conditions of twice
continuous differentiability (Lucia and Feng, 2002). This method
has been shown to be superior to homotopy-continuation for dis-
tillation examples with multiple solutions (Lucia & Yang, 2004).
The method was also successfully applied in complex phase sta-
bility and phase equilibrium problems (Lucia, DiMaggio, Bellows,
& Octavio, 2005). Moreover, according to Lucia and Feng (2002),
it is quite possible that solutions on distinct branches of homo-
topy parametric curves to be connected by terrain. When compared
to interval methods, the terrain methodology is apparently more
suited for large scale problems. This can be inferred by comparing
the number of function evaluations required for solving distilla-
tion problems in Baharev and Rév (2008), Baharev, Achterberg, and
Rev (2009) and Lucia and Yang (2004). For small test problems,
the interval method proposed in this work required less function
evaluations than the terrain method, see Section 4.

The main attractive feature of the interval methods is the math-
ematical guarantees for convergence to all solutions within certain
variable bounds. A similar alternative is to reformulate the non-
linear problem as an optimization problem – e.g. Maranas and
Floudas (1995) and Harding and Floudas (2000) – and then apply
deterministic global optimization methods like ˛-BB. However, this
approach may require problem reformulations and the develop-
ment of convex underestimators specific to each new application
(Gau & Stadtherr, 2002b).

Interval methods start with a set of intervals, one for each vari-
able. This is a rectangle for the bivariate case and a box for the
multi-dimensional case. Then the methods can find boxes smaller
than a prescribed precision � containing all solutions of nonlinear
systems of equations, known as �-solutions. The basic idea is to
apply a Newton-like method using interval arithmetic (IA) coupled
with a generalized bisection (GB) strategy. Taking into account that
usually we are interested only in real-valued solutions, there is no
need to consider the complex domain in interval methods, unless
complex solutions are sought. In recent years, interval based meth-
ods have been successfully used to solve a variety of problems in
chemical engineering – e.g. Schnepper and Stadtherr (1996), Maier,
Brennecke, and Stadtherr (1998), Gau and Stadtherr (2002b), Lin
and Stadtherr (2004), and Lin, Gwaltney, and Stadtherr (2006) –
but with the potential drawback of high computational cost. Spe-
cial attention should be paid in the convergence rate and in the
solution of the underlying interval linear problem. The alternatives
for solving the interval linear problem are mainly solving a series
of linear programming (LP) problems and preconditioning strate-
gies (Baharev et al., 2009; Gau & Stadtherr, 2002b; Lin & Stadtherr,
2004).

An interesting improvement in the interval-Newton methods
was originally proposed by Kolev (1998) and studied/extended
later in some works (Baharev et al., 2009; Baharev & Rév, 2008;
Kolev, 2004; Miyajima & Kashiwagi, 2007; Yamamura & Tanaka,
2006). The basic idea is to replace interval arithmetic (IA) by affine

arithmetic (AA). AA was proposed by Stolfi and de Figueiredo (1997)
in the context of reliable computing and computer graphics appli-
cations (Comba & Stolfi, 1993). The method was designed to give
tighter and more informative bounds than IA in several situations
where the later is known to perform poorly. Additional improve-
ment can be achieved if AA is combined with IA in the so called
mixed AA/IA method. Baharev and Rév (2008), Baharev et al. (2009),
and Baharev, Kolev, and Rév (2011) have successfully used the
mixed strategy in solving distillation problems.

Regarding discontinuities, most of the globally convergent meth-
ods assume continuity. Further, for problems with discontinuity in
the vicinity of the solution, most methods may fail (Shacham &
Brauner, 2002). Alternatives for solving problems with discontinu-
ities have been reviewed by Shacham and Brauner (2002) and a
method for solving problems with discontinuities was developed.
Essentially, the method modify the system by algebraic manip-
ulation, if possible. Otherwise, subspaces of the original feasible
region are defined, with the discontinuities located at the sub-
space’s boundaries. Unfortunately, the method cannot assure that
all solutions will be found.

In the present work, a new mixed AA/IA interval method is
proposed for finding all real �-solutions of systems of nonlin-
ear equations (possibly unbounded discontinuous or which can
become undefined) with bound constrained variables. Similarly
to the methods of Kolev (1998) and Kolev (2004) and Baharev
et al. (2009) and Baharev et al. (2011), a mixed AA/IA is used in
an interval-Newton method plus generalized bisection. The new
mixed AA/IA implementation can handle unbounded discontinu-
ous functions and a special constraint propagation method is used
to remove regions where undefined functions are found. Results
with test functions and typical chemical engineering problems
have shown that the proposed implementation is able to find all
�-solutions and requires less computation effort than similar meth-
ods available in the literature. Further, the method automatically
locate points of discontinuity and removes regions where unde-
fined functions (in terms of real numbers) are found.

2. Interval-Newton methods with IA and AA

2.1. Brief introduction to interval and affine arithmetic

In this section a brief introduction on interval and affine arith-
metic is given. It is mostly based on the excellent monograph by
Stolfi and de Figueiredo (1997).

Interval arithmetic (IA), is a range-based model for numerical
computation where each real quantity x is represented by an inter-
val x = [xl, xu] of floating point numbers, meaning that the true
value of x is known to satisfy xl ≤ x ≤ xu. Those intervals are then
added, subtracted, multiplied, etc., in such a way that each com-
puted interval is guaranteed to contain the unknown value of the
quantity it represents. For instance, the addition and subtraction of
two intervals x and y are computed as follows1:

x + y = [xl + yl, xu + yu] (1)

x − y = [xl − yu, xu − yl] (2)

Then, when computing with IA, for every operation f(x, y, . . .)
(such as sum, product, exponential, logarithm, etc.) a correspond-
ing interval extension f (x, y, . . .) needs to be defined. For certain
functions, determining the exact maxima and minima may be too
difficult and an approximate interval that contains the theoretical

1 In this work we are ignoring roundoff, overflow, and other details. Check Stolfi
and de Figueiredo (1997) or Hansen and Walster (2004).
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