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a b s t r a c t

Coupled reactors and the coupling features of large or heterogeneous core reactors can be investigated
with the Avery’s theory; however, the complex geometries that are often encountered in association with
coupled reactors, require a detailed geometry description that can be easily provided by modern Monte
Carlo (MC) codes. The results presented in this paper show that the MC code SERPENT has been success-
fully modified in order to compute the needed quantities like coupling coefficients. Moreover, the capa-
bility for calculating sensitivities to the quantities of interest for coupling reactors has been developed
and implemented in SERPENT.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The idea of ‘‘coupled” reactors, i.e. reactors with e.g. two core
regions with different spectra, neutronically coupled with or w/o
a geometrical barrier (intermediate zone or buffer, more often
without fissile material), has been originally proposed by Avery
(1958). The motivation at the time was to couple a fast and a ther-
mal assembly in order to obtain a combined system that can have
the breeding ratio characteristics of an all-fast spectrum system
and at the same time exhibiting a prompt neutron lifetime charac-
teristic of a thermal neutron system, i.e. much higher than the one
for an all-fast neutron system, considered at the time as a potential
drawback.

The principle was experimentally tested (Toppel, 1957). Succes-
sively the fast-thermal coupling was often used to build fast neu-
tron experimental facilities with a limited all-fast neutron zone
(see for example Meister et al., 1964, and Bustraan et al., 1970);
moreover that type of system was also experimentally realized
e.g. in order to test the principle of specific coupled systems, as
the pulse coupled reactor system consisting of fast burst reactor
and a subcritical thermal module (Kukharchuk et al., 2000) or even
a cluster of rocket reactors (Seale, 1964).

More recently, the potential of a coupled Fast-thermal reactor
as versatile test reactor has been pointed out (Sen et al., 2016).

Theoretical methods have been developed to describe these sys-
tems both in steady and in transient conditions (see e.g. Avery,
1958; Baldwin, 1959; Komata, 1969; Abramov, 2001).

The ‘‘decoupling” of spatial regions in a reactor, is a well-
recognized phenomenon that has been pointed out the early reac-
tor physics studies. The decoupling/coupling effects are physics
effects that can be found not only in the type of coupled systems
mentioned above, but also in large reactors, where spatial regions
can act as regions weakly or more strongly coupled. The potential
flux tiltiness in the system can be associated for example to the
so-called Boltzmann operator eigenvalue separation (see e.g.
Abramov, 2001,) or, in case of a coupled system, the ‘‘flux tilting”
between e.g. two regions, associated to the flux ratio in these
regions, can be directly related to the ratio of the sub-criticality
in the two regions (Seale, 1964).

In all cases, the performance analysis of these systems, both in
steady or in transient conditions, requires a deep understanding of
the, sometime non-conventional, physics phenomena, from the
appropriate preparation of cross-sections to the evaluation of the
impact of uncertainties and e.g. of the dependence of the specific
coupling phenomena from nuclear data uncertainties.

Moreover, the detailed description of the geometry of typical
coupled systems requires an appropriate Monte Carlo treatment;
see e.g. Fig. 1 from Sen et al. (2016):

The need of using a Monte Carlo code implies its extension to
the evaluation of the typical coupling parameters (see next section)
and the development of a full sensitivity analysis capability.
This capability should go beyond the standard reactor integral
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parameter sensitivity, but should be extended to coupling features
of the system, kinetic parameters and spatial power distributions.

In this paper we will describe the theoretical formulations that
have been developed for this purpose and their practical imple-
mentation together with some significant applications.

2. Short summary of some specific features of the Avery’s theory

For the purpose of this paper, we will remind shortly the sim-
plest form of the coupled reactor reactivity and criticality condi-
tions that are given by (in the case of two coupled ‘‘regions”, (see
Avery, 1958)) for the coupling coefficients kij:

ðk11 � 1Þ k12
k21 ðk22 � 1Þ

����
���� ¼ 0; ð1Þ

k12k21 ¼ D1D2: ð2Þ
where q

Dj ¼ 1� kjj ð3Þ
If we indicate with Si the power of region i, the power ratio in
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The reactivity q is defined as:

q �
XN
i¼1
/i

dv i

v i
; ð6Þ

where

/i ¼
1
DiPN
j¼1

1
Dj

ð7Þ

The point kinetics equations are given (using exactly the same
notations as in Avery (1958)) by:

ljk
dSjk
dt
¼ kjkð1� bÞ

XN
m¼1

Skm � Sjk þ kjk
XD
i¼1

kiCki ð8Þ

dCki

dt
¼ bi

XN
m¼1

Skm � kiCki: ð9Þ

where D is the number of delayed neutron families.
The power in region k is given by:

Sk ¼
XN
m¼1

Skm ð10Þ

In practice, the following expressions are the solution of the
standard Boltzmann equations and that account for the space
and energy dependence:

Sj ¼
Z
½vrf ðr;vÞ�juðr;vÞdrdv: ð11Þ
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Using these expressions, one can solve the kinetics equations
given above accounting for the energy and the within-region space
dependence.

It has been shown the overall Avery formulation as indicated
above, is well suited for a rather quick analysis not only of coupled
systems of the type shown in Fig. 1, but also for the analysis of a
wider class of systems of current interest. This is the case of the
coupling of different regions in large, potentially decoupled sys-
tems like the proposed axially heterogeneous fast reactor ASTRID
(Varaine et al., 2012), as shown in a simplified model below
(Fig. 2), where the fertile region in the middle of the core can
induce weak coupling effects among the different core regions:

In fact the kij coefficients give a rather accurate description of
the coupling mechanism between core regions and the power evo-
lution by region gives a first quantitative indication of potential
power ‘‘tiltiness” e.g. in case of asymmetrical reactivity insertion
(Palmiotti and Salvatores, 2016).

3. Monte Carlo estimators for the coupled system parameters kij

and lij

kij is defined as the average number of fission neutrons pro-
duced in the reactor i by a neutron born in the reactor j. Implicit
Monte Carlo estimators for these quantities were implemented in
several codes, in which the (spatially discretized) Fission Matrix

Fig. 1. XY view of a coupled thermal-fast irradiation test reactor (VCTR from Sen
et al., 2016).
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