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a  b  s  t  r  a  c  t

Kernel  principal  component  analysis  (KPCA)  has  been  widely  used  in chemical  processes  monitoring  due
to its simple  principle.  However,  how  to  select  the  kind  and  parameters  of  kernel  function  still limits  the
application  of  the  method  until  now.  In this  paper,  an  optimization  method  based  on genetic  algorithm
is  developed  to  choose  proper  kind  and  parameters  of  kernel  function.  In this  method,  kernel  kind  and
parameters  are  seen  as  decision  variables  of optimization,  using  correct  monitoring  rate,  number  of
principal  components,  and  statistical  control  limit  of square  prediction  error  (SPE)  as multi-objective.
For  this  specific  problem,  the  fitness  function,  the  algorithm  of  genetic  selection,  crossover  and  mutation
are  designed  to ensure  the diversity  of kernel  function  and  more  selected  chances  of  optimal  individual
in  evolution  process.  A  simple  example  and  penicillin  fermentation  process  are used  to investigate  the
potential  application  of  the  proposed  method;  simulation  results  show  that  the  proposed  method  is
effective.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the field of process performance monitoring and fault diag-
nosis in chemical processes, multivariate statistical process control
(MSPC), or process performance monitoring, has been extensively
researched over the last decade as an alternative to knowledge-
based approaches. One of cornerstones of MSPC is the principal
component analysis (PCA) (Wold, Esbensen, & Geladi, 1987), which
has played a significant role in dimensionality reduction, noise
removal, and feature extraction from the original data set as a pre-
processing. It divides data information into systematic part and
noisy part. The systematic part contains the most variation in the
data, while the noisy part has the least variation. For process mon-
itoring, PCA uses two statistics, represented by Mahalanobis and
Euclidean distances, to detect changes in the systematic part and
the noisy one, respectively.

However, PCA is a linear method and most practical prob-
lems are nonlinear, thus using linear PCA in nonlinear problems
can sometimes be inadequate (Palus & Dvorak, 1992). To
handle the problem posed by nonlinear data, two types of
methods are designed. One of methods is neural network.
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Kramer (1991) developed a nonlinear PCA method based on auto-
associative neural networks. However, the network proposed by
Kramer is difficult to train because it has five layers. Moreover, it is
difficult to determine the number of nodes in each layer. Tan and
Mayrovouniotis (1995) developed a nonlinear principal component
analysis method based on input-training neural network, which has
three layers. However, the input and weight training are received
by the output, and the training is difficult. Dong and MaAvoy (1996)
developed a nonlinear PCA approach based on principal curves and
two three-layer neural networks. Saegusa, Sakano, and Hashimoto
(2004) developed a hybrid neural network approach. The method
uses m sub neural network; it can determine the number and order
of principal components (PCs), but each neural network still has
five layers and the output of the hidden layer in each sub neu-
ral network is designed as the input of the third hidden layer in
follow-up sub network, and the training is difficult. Jia, Niu, Wang,
and Zhao (2007) and Jia, Zhao, Wang, Mao, and Li (2008) developed
a three-layer neural network nonlinear principal component anal-
ysis approach, and it has the same interpretation with the linear
principal component analysis approach.

The other method is transform space, and the most representa-
tive approach is kernel principal component analysis (KPCA) (Mika
et al., 1999; Schölkopf et al., 1999; Schölkopf, Smola, & Muller,
1998). The basic idea of KPCA is firstly to map  the input space into a
feature space via nonlinear mapping and then compute the PCs in
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that feature space. For any given algorithm that can be expressed
solely in terms of dot products, i.e., without explicit use of the vari-
ables themselves, this kernel method enables the construction of
different nonlinear versions of the original algorithm (Christianini
& Shawe-Taylor, 2000).

Compared with other nonlinear methods, the main advantage of
KPCA is that it does not involve nonlinear optimization (Schölkopf
et al., 1998); essentially it only requires linear algebra, which makes
it as simple as standard PCA. KPCA requires only the solution of
an eigenvalue problem, and due to its ability to use different ker-
nels, it can handle a wide range of nonlinearities. In addition, KPCA
does not require the number of components to be extracted and
specified prior to modeling. Due to these advantages, KPCA has
been studied extensively. Lee proposed a new nonlinear process
monitoring technique based on KPCA and a fault identification
method (Choi, Lee, Choi, Lee, & Lee, 2005; Choi, Lee, Lee, Park, &
Lee, 2005). Lee, Yoo, and Lee (2004) developed MKPCA approach,
and then KPCA was promoted to batch process. Choi and Lee (2004)
developed DKPCA approach, Sun, Tsung, and Qu (2007) developed
EKPCA approach, Choi, Morris, and Lee (2008) developed multiscale
KPCA approach, Liu, Kruger, Littler, Xie, and Wang (2009) developed
MWKPCA approach, and “Ge, Yang, and Song (2009) developed
kernel PCA-based monitoring approach for nonlinear processes”
is changed to “Lee, Yoo, and Lee (2004) developed multiway KPCA
(MKPCA) approach”, and then KPCA was promoted to batch process.
Choi and Lee (2004) developed Dynamic KPCA (DKPCA) approach,
Sun et al. (2007) developed evolving KPCA (EKPCA) approach, Choi
et al. (2008) developed multiscale KPCA approach, Liu et al. (2009)
developed moving window KPCA (MWKPCA) approach, and Ge
et al. (2009) developed kernel PCA-based monitoring approach for
nonlinear processes.

Kernel function is the key to KPCA approach, and the kernel func-
tion chosen by KPCA is not arbitrary. It is required to satisfy Mercer’s
theorem. According to Mercer’s theorem of functional analysis,
there exists a mapping into a space where a kernel function acts
as a dot product if the kernel function is a continuous kernel of
a positive integral operator. A specific choice of kernel function
implicitly determines the mapping and the feature space (Lee, Yoo,
Choi, Vanrolleghem, Lee, 2004). In KPCA, the selection of a kernel
function is the most important since the degree of capturing non-
linear characteristic of a system is dependent on it. Representative
kernel functions are as follows:

(1) Polynomial kernel: k(x, y) = (1 + 〈x, y〉)d

(2) Sigmoid kernel: k(x, y) = tanh(ˇ0〈x, y〉 + ˇ1)
(3) Radial basis kernel: k(x, y) = exp(−(||x − y||2/c))

where d, ˇ0, ˇ1 and c are specified a priori by the user. The polyno-
mial kernel and radial basis kernel always satisfy Mercer’s theorem,
whereas the sigmoid kernel satisfies it only for certain values of
ˇ0 and ˇ1 (Haykin, 1999; Lee, Yoo, Choi, et al., 2004). The general
question of how to select the ideal kernel for a given monitoring
process is an open problem. Furthermore, once the kernel is set,
proper kernel parameters should be set. However, there is either
no theoretical framework to specify the optimal values of kernel
parameters. Generally, both kernel functions and their parame-
ters are set by trail and error. First, one initialization is empirically
chosen; then the changing trend around the initial value is inves-
tigated; finally the candidate which shows best performance is
obtained (Shao & Rong, 2009; Zhang, 2009). That is, the perfor-
mance of KPCA-based monitoring method largely depends on its
kernel function.

A specific study on penicillin fermentation process suggests that
polynomial kernel function is more effective to get nonlinear char-
acteristics of penicillin fermentation process compared with other
kernel functions (Lee, Yoo, Choi, et al., 2004). Generally, the study

of how to choose the kind and parameters of kernel function for the
process monitoring does not be reported currently. In the past few
years, the similar problem is discussed in support vector machines
(SVM). Support vector machines (SVM) were first suggested by
Vapnik (1995) and have recently been used in a range of problems
including pattern recognition (Pontil & Verri, 1998), bioinformatics
(Yu, Ostrouchov, Geist, & Samatova, 2003), and text categorization
(Joachims, 1998). When using SVM, two problems are confronted:
how to choose the optimal input feature subset for SVM, and how to
set the best kernel parameters. To design a SVM, one must choose
a kernel function, set the kernel parameters and determine a soft
margin constant C (penalty parameter). The Grid algorithm is an
alternative to finding the best C and gamma  when using the RBF
kernel function. However, this method is time consuming and does
not perform well (Hsu & Lin, 2002; LaValle & Branicky, 2002). More-
over, the Grid algorithm cannot perform the feature selection task.
So, Huang and Wang (2006) proposed a genetic algorithm approach
for feature selection and parameters optimization. This method is
applied to software effort estimation by Adriano, Petronio, Ricardo,
and Márcio (2010).  The asymptotic behaviors of SVM are fused
with genetic algorithm and the feature chromosomes are gener-
ated, which thereby directs the search of genetic algorithm to the
straight line of optimal generalization error in the super parameter
space (Zhao, Fu, Ji, Tang, & Zhou, 2011). Wua, Tzeng, and Lin (2009)
proposed a novel and specialized hybrid genetic algorithm for opti-
mizing all the SVR parameters simultaneously. In the same year, a
hybrid of genetic algorithm–support vector machines (HGASVM)
approach is presented in digital modulation classification area for
increasing the support vector machines (SVM) classification accu-
racy (Engin, 2009). Based on these research results, in this paper,
combined with KPCA process monitoring, an optimal model is
established. In this model, kernel kind and parameters are seen
as decision variables; maximum correct monitoring rate (CMR),
minimum number of PCs and minimum statistical control limit
of squared prediction error (SPE) are seen as multi-objective. An
improved genetic algorithm (GA) is used to solve the model. Sim-
ulation results show that the proposed method has a good effect.

2. Method to determine kernel function and its parameters

2.1. Optimization index

In industrial application, for the process under study, the kernel
function and its parameters are usually determined after testing
the method’s monitoring performance (shown by the T-square and
Q/SPE statistics). This is called cross-validation. Cross-validation
was originally employed to evaluate the predictive validity of linear
regression equations and used to forecast a performance criterion
from scores on a battery of tests (Mosier, 1951). Cross-validation
based on the prediction error sum of squares (PRESS) and R ratio
firstly is a popular statistical criterion to choose the number of fac-
tors in PCA (Krzanowski, 1987; Wold, 1978). When PCA is used as a
dimension reduction method for classification, cross-validation is
often used to determine the number of factors in the model such as
Linear Discriminant Analysis (LDA). And the correct classification
rate (CCR) of classification result is seen as an indicator of cross-
validation. In this paper, cross-validation is also used to determine
the optimal optimization index.

2.1.1. KPCA
Consider a distribution consisting of n data points xi ∈ Rm i =

1, . . . , n. To derive KPCA, these data points are mapped into a higher
dimensional feature space H,  ̊ : xi → H, and assume ˚(xi) mean-
centered and variance-scaled. Calculate the covariance matrix CH
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