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a b s t r a c t

Point kernel method for nuclear power plant shielding analysis is widely used due to the simplicity of its
application, implementation, and their fast solution. Point kernel method is mainly used to estimate an
initial guess for the shielding design including material selection and shielding thickness. The buildup
factor of point kernel method is of importance, which depends on photon energy and material attenua-
tion parameter. In this paper, buildup factors of the point kernel method are put together from literature
survey and a weighted least square fitting approach is used to provide more accurate results of the point
kernel method. Uncertainties are evaluated when applying buildup factors based on the error propaga-
tion approach. Furthermore, a simple point kernel module is applied in the spherical geometry in order
to test the fitted build up factors. Monte Carlo results are also used to validate the point kernel results
with the least square fitted buildup factor in multi-layer test problems.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The buildup factor is defined as the total flux including scatter-
ing and un-scattering events to un-scattered flux. And it is neces-
sary to obtain reliable solutions of the radiation shielding
analysis based on the point-kernel method. Dose absorption and
energy absorption buildup factors are widely used in the shielding
analysis, which are dependent of material, photon energy, and
photon mean free path. The dose rate of the medium is main con-
cern in the dose buildup factor, however energy absorption is of
importance in the energy buildup factors (Trubey, 1996). Buildup
factors begin with the empirical data by Goldstein and Wilkins.
From then on lots of scientists have suggested several fitting
approaches to obtain valid buildup factors and have tried to simu-
late the real application areas by utilizing advanced computational
tools. ANSI/ANS-6.4.3-1991 standard data proposes both interpola-
tion and extrapolation by means of an approximation method
(Durani, 2009). Recently, Yoshida’s geometric progression (GP)
approach (Yoshida, 2006) is also proposed in a nonlinear fitted
function and is widely used now. GP approach is also implemented
in the QAD code (Broadhead and Emmett, 2009), which uses two
kinds of buildup factors; DOSE for the standard air exposure
response and ENG for the response of the energy absorbed in the
material itself.

In the case of multilayer or stratified shielding problems, suit-
able buildup factors data is of main concern and many researches
have been tried to generate the buildup factor data sets for certain
configurations of multilayer shields (two layers or more) either as
tabulated data or as figures (Bakos and Tsagas, 1994; Hirayama and
Shin, 1998; Lin and Jiang, 1996; Shin and Hirayama, 2001).

In this paper, the weighted least square fitting method is taken
into consideration to obtain a reliable uncertainty of buildup factor
which is collected from several literatures proposed since 1991.
The variances of the obtained buildup factors are used as a weight.
Thus, the weighted least square fitting method provides an effi-
cient result that makes good use of small data sets. It also provides
different types of statistical intervals for estimation, prediction,
calibration and optimization. And the main advantage of that
weighted least squares is to handle regression where the data
points are various qualities. When the variance of the random
errors in the data is not constant across all levels of variables, the
weighted least squares yields the most precise parameter
estimates possible (NIST, 2012).

Total four datasets of air exposure buildup factors are analyzed
for evaluation such as ANSI/ANS-6.4.3-1991, Taylor, Berger, and GP
data (Chilton et al., 1984). And the uncertainty of buildup factor is
derived from mainly based on the standard deviation of the fitted
data and then it is combined by statistical and non-statistical
results which are obtained from different methods. The dose rates
of the point kernel method are also obtained and the uncertainties
of the dose rate are evaluated by using the error propagation.
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Section 2 provides a brief review of the least square fitting
methods and the fitted buildup factor for several materials are
dealt with in Section 3. In order to verify the least square fitted
results, a simple point kernel code is developed and its results
are compared with those of the MCNP5 (X-5, 2003) code in
Section 4. And finally, a summary and a conclusion of this work
are given in Section 5.

2. Weighted least square fitting method

When buildup factors are distributed as a function of the mean
free path for given photon energy, the weighted least square fitting
method of the k-th order polynomial is expressed as follows

y1 ¼ a0 þ a1x1 þ a2x21 þ a3x31 þ � � � þ akxk1
y2 ¼ a0 þ a1x2 þ a2x22 þ a3x32 þ � � � þ akxk2

..

.

yn ¼ a0 þ a1xn þ a2x2n þ a3x3n þ � � � þ akxkn

ð1Þ

and their matrix form is easily obtained, too.
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where aj is a coefficient of x j polynomial to be determined, and yi is
a buildup factor. In the case of the polynomial fitting method, mean

free path, xij is expressed as xij ¼ x j
i .

The matrix equation with weighted least square method is writ-
ten as in a simplified form such as

XTWXA ¼ XTWY ð3Þ
where W is a weight matrix and it is a diagonal matrix of which
term is Wii ¼ 1=r2

i . The variance of the buildup factor is defined
as r2

i . It works as a weighting thus this least square fitting method
is called as ‘weighted least square method’. In this case, it is
assumed that there are no correlations between buildup factors of
yi. For simplicity, when variances are not taken into consideration,
the weight matrix is equal to the unit matrix.

Eq. (3) is solved easily by matrix inversion and the coefficients
are obtained as (Chapra, 2013)

A ¼ ðXTWXÞ�1
XTWY ð4Þ

and their variances are also obtained as

VðajÞ ¼ r2ðajÞ � R
n�m

ðXTWXÞ�1
jj ð5Þ

where R is the total residue, R ¼ P
i
ðyi � ŷiÞ2, ŷ is an estimate of the

given buildup factor of y, and m;n are the fitting polynomial order
and number of data sets, respectively (Wikipedia, 2015). If we
obtain the fitting coefficients, then the buildup factor (ŷ) is obtained
given a mean free path (x). y is the provided raw data. In general,
when evaluating the fitting variance, it is assumed that the variable
of X has no errors. The standard deviation of the fitted buildup fac-
tor is easily expressed as follows when the third order polynomial is
selected:

r2ðŷðxiÞÞ ¼ r2ða0Þ þ x2i r
2ða1Þ þ x4i r

2ða2Þ þ x6i r
2ða3Þ

þ 2xicovða0; a1Þ þ 2x2i covða0; a2Þ þ 2x3i covða0; a3Þ
þ 2x3i covða1; a2Þ þ 2x4i covða1; a3Þ þ 2x5i covða2; a3Þ

ð6Þ

where covðai; ajÞ � R
n�m ðXTWXÞ�1

ij . Depending on the distribution of
raw data, the adequate fitting order can be chosen. In our test
region, the data is smoothly distributed, thus the third order poly-
nomial is selected to provide sufficient accuracy of fitted results.

3. Uncertainty of buildup factor

When a buildup factor (y) is a function of variables x (energy or
mean free path), its combined uncertainty is expressed as follows:

y ¼ f ðx1; x2; x3; � � � ; xnÞ

U2
y ¼

Xn
i¼1

@f
@xi

� �2

u2ðxiÞ þ
Xn
i¼1

Xn
j¼1;j–i

@f
@xi
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@xj

� �
uðxiÞuðxjÞ

ð7Þ

where Uy is uncertainty of a buildup factor y and uðxiÞ is uncertainty
of a variable of xi. @f=@xi is the sensitivity coefficient of a variable xi.

If there is no correlation between variables, the latter term of
Eq. (7) will be neglected for evaluation of the combined uncer-
tainty. For example, there are several useful ways for uncertainty
evaluation such as additive and multiplicative rules:

Y ¼ cAþ dB; U2ðYÞ ¼ c2u2ðAÞ þ d2u2ðBÞ
Y ¼ cA2 � dB; U2ðYÞ ¼ 4c2A2u2ðAÞ þ d2u2ðBÞ
Y ¼ cAB; R2ðYÞ ¼ R2ðAÞ þ R2ðBÞ
Y ¼ cA2

=B; R2ðYÞ ¼ 2R2ðAÞ þ R2ðBÞ

ð8Þ

where A; B: variables, c; d: constants, UðYÞ: uncertainty of Y, uðAÞ:
uncertainty of A, RðYÞ: relative uncertainty of Y (RðYÞ ¼ UðYÞ=Y), and
RðAÞ: relative uncertainty of A (RðAÞ ¼ uðAÞ=A).

Table 1
Buildup factors of concrete and lead for a 1 MeV photon source.

Normalized MFP Concrete Lead

ANSI/ANS Taylor Berger GP ANSI/ANS Taylor Berger GP

0.5 1.45 1.733 1.645 1.450 1.20 1.158 1.149 1.195
1 1.98 2.488 2.311 1.982 1.38 1.312 1.296 1.367
2 3.24 4.069 3.708 3.233 1.68 1.612 1.582 1.675
3 4.72 5.746 5.194 4.711 1.95 1.900 1.860 1.952
4 6.42 7.524 6.774 6.405 2.19 2.176 2.130 2.206
5 8.33 9.409 8.452 8.308 2.43 2.441 2.392 2.444
6 10.40 11.406 10.233 10.412 2.66 2.697 2.645 2.670
7 12.70 13.520 12.122 12.713 2.89 2.942 2.891 2.886
8 15.20 15.757 14.124 15.202 3.10 3.178 3.129 3.095
10 20.70 20.624 18.490 20.718 3.51 3.626 3.582 3.495
15 37.20 35.402 31.786 37.287 4.45 4.616 4.593 4.426
20 57.10 54.690 49.171 57.153 5.27 5.462 5.445 5.275
25 80.10 79.676 71.661 79.966 5.98 6.200 6.155 6.014
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