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ABSTRACT

As modern computing power grows, whole-core transport calculations become more viable with parallel
computing architectures. Nonoverlapping local/global (NLG) iterative method has been recently
developed for the whole-core transport calculation. The NLG iteration adopts the 2-D/1-D fusion trans-
port kernel as the local solver, and the p-CMFD equation is used as the global wrapper. The NLG iteration
is capable of solving 3-D transient heterogeneous problems, and it is naturally parallelizable. In this
study, the computationally-expensive local problems in the NLG iteration are parallelized by MPI proto-
col, and the Predictor-Corrector Quasi-Static (PCQS) method is applied to the transient calculations to
reduce the computing time further. The parallelized NLG iteration and the PCQS method have been
implemented in an in-house code, CRX-2K. Several numerical problems are computed, and the numerical
results reveal that the parallelized NLG iteration has high potential in the realistic whole-core transport
calculation, and the computing time in the transient calculations can be reduced by the PCQS method if
the reactivity behaves linearly in time for a given macro time-step size.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-group diffusion nodal methods with assembly-wise nodal
parameters have been used as a tool for conventional reactor core
analysis. The nodal parameters are obtained by isolated single-
assembly transport calculations under all-reflective boundary con-
dition, so the inter-assembly transport effects are not well
reflected. As computing power grows both in CPU clock speed
and computing memory size, the direct whole-core transport cal-
culation becomes attractive.

Despite the computing power growth, the direct whole-core
transport calculation is not practical yet due to its tremendous
computational burden (Smith et al.,, 2003; Hoogenboom et al.,
2010) with current computing systems. However, the whole-core
transport calculation could be viable if a proper method is powered
by modern parallel hardware architectures. Note that the comput-
ing power growth is physically limited by CPU clock speed, but it is
growing by the adoption of parallel hardware architectures (Sutter,
2005).

* Corresponding author. Tel.: +82 (42) 350 3819; fax: +82 (42) 350 3810.
E-mail address: nzcho@kaist.ac.kr (N.Z. Cho).

http://dx.doi.org/10.1016/j.anucene.2015.12.018
0306-4549/© 2015 Elsevier Ltd. All rights reserved.

As an effort to use the modern parallel hardware architecture in
the whole-core transport calculation, the nonoverlapping
local/global (NLG) iterative method (in short, the NLG iteration)
has been developed (Yuk et al., 2013; Yuk and Cho, 2014, 2015),
and extended to transient calculations recently in a companion
paper (Cho and Cho, 2015). The NLG iteration is naturally paral-
lelizable, so the implementation of parallel computing is straight-
forward. In the NLG iteration, the local problems are solved by
the 2-D/1-D fusion transport method (Cho et al., 2002, 2003; Lee
and Cho, 2006; Lee, 2006), and the p-CMFD method (Cho et al,,
2003; Cho, 2012) is used as the global wrapper. The solution by
the NLG iteration is 3-D transport solution in fine-mesh level, since
the 2-D/1-D fusion kernel does not need any homogenization in a
cell level.

In the transport transient calculations, the time-step size should
be in millisecond-order to obtain accurate solutions (Cho and Cho,
2015; Cho et al., 2005; Rineiski and Doriath, 1997; Zhu et al,,
2015a), so the transient calculations usually consume much longer
computing time than the steady-state calculation (Cho and Cho,
2015). Therefore, a larger time-step size is inevitable to reduce
the computing time, but a larger time-step size will obviously lead
to an inaccurate solution. The Predictor-Corrector Quasi-Static
(PCQS) method (Dulla et al., 2008) may preserve the solution
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accuracy with a larger time-step size, since the PCQS method fac-
torizes the angular flux into a slow varying (in time) “shape func-
tion” and an “amplitude function”.

In this paper, the local problems (i.e., the 2-D/1-D fusion trans-
port kernel) in the NLG iteration are parallelized by Message Pass-
ing Interface (MPI) protocol (Gabriel et al., 2004). Therefore, the
heavy computational burden loaded in the local transport calcula-
tions can be distributed over parallel computing nodes, and conse-
quentially the total computing time will be reduced. In addition,
the PCQS method is applied to the NLG iteration to reduce the com-
puting time further in the transient calculations, and the adjoint
angular flux required in the PCQS method to formulate the point
kinetics (PK) equations (Dulla et al., 2008; Caron et al., 2016) is
approximated by the solution of a steady-state adjoint p-CMFD
equation. As a sequel to the companion paper (Cho and Cho,
2015), this paper is organized as follows. In Section 2, the paral-
lelization of the NLG iteration is described. In Section 3, the PCQS
method for the NLG iteration is derived. Numerical results are
shown in Section 4, and conclusions are presented in Section 5.

2. Parallelized nonoverlapping local/global iterative method

In the transient NLG iteration, the local problems are solved by
the transient 2-D/1-D fusion transport kernel (abbreviated by the
2D1D FTK, here and after), and the local problems are wrapped
up by the transient p-CMFD equation as the global wrapper. In this
section, the formulation of the 2D1D FTK and the corresponding p-
CMFD equation are derived. The derivational procedures are exten-
sively covered by the companion paper (Cho and Cho, 2015), so
some derivational procedures are simplified. The way of paral-
lelization and the proper local problem size are also discussed in
this section.

2.1. Local problem: transient 2-D/1-D fusion transport kernel

Let us consider the following time-dependent neutron transport
equation with delayed neutron precursors:
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state calculation,

where g is the group index, d is the delayed neutron precursor fam-
ily index, Cy is the delayed neutron precursor concentration of fam-
ily d, s is outgoing normal vector subjected to surface s, and the
other notations are standard.

To derive angle- and time-discretized neutron transport equa-
tion at the time step t,.;, several approximations are introduced:
(i) The time derivative term in Eq. (1) is approximated by the fully
implicit method, and the angular flux in the derivative term is

assumed to be isotropic to avoid huge memory requirement (Cho
et al., 2005; Talamo, 2013), (ii) the fission source term in Eq. (2)
is approximated by a second-order polynomial in time, and is
integrated analytically to eliminate the delayed neutron precursor
concentration unknown (Joo et al., 1998), and (iii) the continuous
angle domain is discretized by the product quadrature (Lewis
and Miller, 1984) in the azimuthal angle and the TY quadrature
(Yamamoto et al., 2007) in the polar angle. With the approxima-
tions, the following angle- and time-discretized neutron transport
equation at the time step t,.; with the angle direction Qj is written
as follows:

alpg](F) 8l//g] (F)

op

sin 0;
o oz

+¢

+ O’t.gl//gj(?) = qg(F)5 (3)
where

qg(ﬂ = (O(g + (1 - ﬁ)Xp,g)F(Fv tn+1) + Zasﬂ‘g’ﬂgd)gf(?, tﬂ+1) + Sg(F, tn)
rg

_ l (bg(Fs tn+1) -
Vg Atn+1

g (T, tn) .

dg = Z;{d,gﬁdgdnﬂu
d

Se(Fotn) = Z/dgTdAdCd (T, tn) + Z Zydgﬁdbdll: (r, ),
I=n-1

F(F 1) kfvaafgqsg ¥ 1),

1 2%, .

Sovs = Tty 1 a7 )

_ 2\,
2qAtn @

o2, U ( 2 71)
),dAtn('))-i-]) )vdAfn('})-i-‘l)’)) AdAty, ’

and C4(7, t,) is the delayed neutron precursor concentration at time
step t,, and other quantities are defined in the companion paper
(Cho and Cho, 2015). The time step index is omitted for the sake
of brevity. Eq. (3) can be rewritten in the radial and the axial equa-
tions as follows without any approximation:
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To solve the complementary equations numerically, the space
domain is discretized into radial flat source regions (FSRs) and axial
2-D homogeneous planes. In a FSR, the source terms in Egs. (4) and
(5) are given to be constant in the radial direction (yet angle-
dependent). After the right-hand sides of Eqs. (4) and (5) are inte-
grated and averaged in (i) the axial direction over the 2-D homoge-
neous k-th plane and (ii) the radial direction over the FSR m
respectively, the following “consistently directional decomposed
and integrated” 2-D and 1-D equations in the FSR m in the k-th
plane are obtained:
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