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Many methods have been proposed to optimize fuel assembly design, most of them based on metaheuris-
tic techniques. The method presented here is based on the inverse perturbation theory. Parameters to be
optimized are some isotope densities, such as Gd, 23°U, 23°Pu. The optimization is constrained to some
target values of relevant reactor observables, such as the breeding ratio, the reactivity loss rate during
the fuel cycle, the maximum reactivity, the spectral index. The method is fit to solve multi-objective
problems. In the examples, 2 or 3 simultaneous objectives are determined.
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1. Introduction

Fuel assembly design optimization can be done in two main
ways: in one hand, determining the value of some integral param-
eters constrained to an integral observable or, in the other hand,
determining the spatial distribution of some local parameters con-
strained to a local observable. In the first class of problems we can
find the gadolinium density that enables to match a target reactiv-
ity loss rate, or the plutonium density that enables to match a tar-
get breeding ratio. In the second class we can find the
determination of the position of gadolinia pins that enable to min-
imize the local peaking factor.

Many methods have been introduced to solve this kind of prob-
lem. They are based either on a pure mathematical framework or
on metaheuristic techniques that mimic some natural phenomena.
In the first class of methods we find the Newton-Raphson method
and the perturbation methods (Gandini et al., 1969; Dall’Osso,
2009). In the second class we can find the simulated annealing
(Rogers, 2008; Galloway et al., 2008), the neural networks (Ortiz
et al., 2006), the genetic algorithms (Yilmaz, 2005). Several other
methods belong to the second class. They have mainly been
devoted to reload pattern optimization (Francois et al., 2013).

The method presented here is based on the inverse perturbation
theory. As Ronen (1979) suggested, whilst perturbation theory
enables determining the effect of a known perturbation on a given
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physical system, inverse perturbation theory enables determining
the perturbation that causes a known effect. The inverse general-
ized perturbation theory has been presented in detail in a previous
article (Dall’Osso, 2009) and only the basic methodology frame-
work is recalled here, in Section 2.1. In Section 2.2 an improvement
based on the application of the method to special observables is
presented. Examples are presented in Section 3. Some aspects of
the method are discussed in Section 4. Conclusions are provided
in Section 5.

2. Method

We present hereafter the approach for the case of simple
observables such as the spectral index or the breeding ratio, and
for special cases where the observables are derivatives of the reac-
tivity. This later case is useful to determine maxima or minima.

2.1. General case

Let us consider an observable quantity f in the system,
expressed as the ratio of linear functionals of the neutron flux ®:
(hy, @)
= , 1

where h; and h, are linear operators and the product (h,®) is

defined as [ [ [ h®d’rdEdQ.
For instance, if the observable f is the spectral index (defined as
the ratio between the fast and the thermal flux), we have:
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where E. is the cut energy, i.e. the energy separating the thermal
from fast energy domain, typically E. = 0.625 eV.

Our problem is to determine the change in a parameter p (e.g.
239py density) in order to achieve the target value of f and satisfy-
ing the neutron balance equation, in steady state:

AD = LF(I), (3)
keff

where A and F are the absorption-scattering and the fission produc-

tion operators respectively, and ke is the effective multiplication

factor.

At the basis of the inverse perturbation method there is the
importance W, (Gandini, 1967) associated to the observable f, in
the initial state of the system (indicated by the subscript 0). The
importance is the solution of the equation:

1

AO lIJO - keff,O

FoWo + S, (4)
where the term Sj is the source of the generalized importance asso-
ciated to the functional appearing in Eq. (1), defined as:

o oy
(h10,@0) (h20,Dg)"

By definition, the term S; is orthogonal to the flux (ie.
(Sg; @o) = 0). This condition allows a solution to the problem
defined in Eq. (4).

After some manipulations on Egs. (3) and (4) and using the def-
initions in Egs. (1) and (5) we obtain (Dall'Osso, 2009):
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where we have introduced the following definitions: A = A — Ao,
O0F =F —Fp and 6f =f — f,.

If we indicate with Jp the variation that must be applied to the
global parameter p in order to attain the desired value of the
observable f, Eq. (6) can be rewritten, neglecting second order
dependencies, as:
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In the general case, the partial derivative 9/9p is approximated
by the ratio between the variations of the operators (A, F, h; and h,)
and the independent parameter p into two states, for instance
A, A+3p)-A(p)
ap Sp .

In case the independent parameter is the nuclide density of an
isotope, the elements of matrix A/dp are the microscopic absorp-
tion and scattering cross sections and the elements of matrix 9F /9p
are the microscopic production cross sections. It can be shown that
in this case the h operators are linear combinations of the micro-
scopic cross sections (Dall’Osso, 2009).

In more general situations, several constraints must be satisfied
on several observables f; (j=1,..., N¢) and the same number of
parameters p; (i=1,..., Nc) has to be determined. In such cases,
Eq. (7) can be reformulated by adding the subscript j in hj;p,
hj20 and ¥}, in order to distinguish the operators and importance

related to the different observables:

(7)
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Eq. (8) constitutes a set of Nc equations in Nc unknowns. Solving
it with respect to dp; we obtain the values of the parameters
enabling matching the target values f; of the observables. Since
the flux @ in Eq. (8) is not known, the determination of the con-
strained parameters p; is done by an iterative process:

e Compute the fluxes solving Eq. (3).

e Determine Jp; solving Eq. (8), where the target values of f; are
imposed.

e Continue until a fixed residual error is reached.

Approaching to the convergence, the error due to neglecting
second order dependencies and the error on the evaluation of the
derivatives become smaller and smaller. It has to be pointed out
that Egs. (7) and (8) have been derived using the exact perturba-
tion theory (not approximated to first order), therefore they are
valid for any amount of the variation and with only one calculation
of the adjoint functions (at the initial state).

In case the jth observable to be controlled is ke, the related
equation is derived from the classical perturbation theory and
becomes (Dall’Osso, 2008):
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instead of Eq. (8), with ®; the adjoint flux in the initial
configuration.

Examples of this problem are the determination of isotope den-
sities, such as the triple search presented in Section 3.1, where the
239py, 198 and the H,0 densities are constrained to breeding ratio,
criticality and spectral index.

2.2. Special case: reactivity derivatives as target observables

In some problems the observable that has to be optimized is a
derivative of the reactivity, such as a sensitivity, or a reactivity
coefficient (e.g. the Doppler coefficient). In this case the derivative
can be expressed using the classical perturbation theory. The
expression can be obtained using Eq. (9) for a single parameter
pi,» that we indicate with symbol ¢, and taking the limit for
é6q — 0, which implies that the initial state becomes equal to the
final state (®; — ®" and Fo — F):

ap (@ <8qié%)q)>_ (10)
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Taking into account that by definition of adjoint operator
(D", AD) = (A"®", @) and (D", FD) = (F*®*, @), this means that the
operators h; and h;, associated to the observable defined in Eq.
(10) are:

_ 0A" 1 OF* *
hl_*(ﬁff@%)q” (11)

In this kind of problem the perturbation theory it used twice: to
compute the h operators and to solve the optimization problem.

Examples of this problem are the determination of the gadolin-
ium density constrained to the reactivity loss rate (Section 3.2) and
the determination of the water density maximizing the multiplica-
tion factor (Section 3.3).
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