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a b s t r a c t

A new optimally diffusive Coarse Mesh Finite Difference (odCMFD) method is proposed. The new method
generalizes the Coarse Mesh Finite Difference (CMFD) and partial current-based CMFD (pCMFD) methods
by adding an artificial term to the diffusion coefficient. The standard CMFD and pCMFDmethods preserve
the net current and partial currents respectively and can greatly reduce the spectral radius for solving
neutron transport problems. Linearized Fourier analysis shows that these methods essentially differ only
by the definition of the diffusion coefficient – the pCMFD diffusion coefficient contains an additional ‘‘ar-
tificial” term, usually taken to be ¼ the coarse mesh size. In this paper, the magnitude of the artificially
diffusive term is numerically investigated and optimized using Fourier analysis. The results show that the
optimal coefficient increases as the coarse cell optical thickness increases. Also, the optimal value is
always smaller than the pCMFD value. This indicates that the pCMFD method overcorrects the diffusion
coefficient which increases the spectral radius. A simple polynomial fitting was found for implementing
the odCMFD in the MPACT code to perform calculations for realistic problems. Numerical MPACT results
for a two-region homogeneous problem, a 2D C5G7 problem, a VERA problem 5 and a 2D BWR Peach
Bottom Unit 2 core problem agree well with the Fourier analysis and confirm previous research results
that: (1) CMFD converges faster than pCMFD for optically thin coarse grids, but CMFD diverges for opti-
cally thick coarse grids; (2) pCMFD is unconditionally stable for all coarse grids; and show that the newly
proposed odCMFD is the most efficient among these three methods for all cases. The new method has a
similar convergence rate as CMFD for optically thin coarse grids, is faster than both CMFD and pCMFD for
coarse grids with intermediate optical thickness, and is unconditionally stable and faster than pCMFD for
optically thick coarse grids.

Published by Elsevier Ltd.

1. Introduction

Three-dimensional, full-core modeling with pin-resolved detail
has become the state of the art for computational simulations of
neutron transport for nuclear reactors. However, the computa-
tional intensiveness of these problems is challenging, especially
for cycle depletion (Kochunas et al., submitted for publication)
and time-dependent transient analysis (Zhu et al., 2016a,b) which
requires the solution of multiple steady state eigenvalue/transient
fixed source problems.

Extensive studies of various acceleration methods for neutron
transport have been performed, and their convergence and stabil-
ity have been analyzed both theoretically and numerically (Adams
and Larsen, 2002; Li, 2013). Of these methods, the Coarse Mesh
Finite Difference (CMFD) method, which originates from the early

1980’s (Smith, 1983) for diffusion problems has gained popularity
in recent decades for its simplicity and efficiency in accelerating
the steady state (Downar et al., 2009; MPACT Team, 2013) and
transient neutron transport calculations (Zhu et al., 2015; Cho
et al., 2005; Shaner et al., 2013). However, numerical and theoret-
ical results show that for realistic whole-core calculations, the
CMFD method becomes unstable for problems with large coarse
mesh cells (Jarrett et al., 2015; Keady and Larsen, 2015; Lee
et al., 2004; Hong et al., 2010).

More recently, a variant of the CMFD method, called partial
current-based CMFD (pCMFD), was developed by Cho (Cho et al.,
2003) and found to be unconditionally stable for monoenergetic
infinite homogeneous medium problems (Hong et al., 2010; Cho,
2012). A linearized Fourier analysis (Jarrett et al., 2015; Jarrett,
submitted for publication) demonstrated that the pCMFD is theo-
retically and algebraically ‘‘equivalent” to the CMFD method if an
additional term hD – shown in Eq. (1) – is added to the diffusion
coefficient (referred as artificially diffusive CMFD method), where
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D denotes the coarse mesh size. This extra term effectively sup-
presses the spectral radius for large coarse mesh sizes, for which
the CMFD method can be unstable. However, the Fourier analysis
of pCMFD, along with numerical results has shown that pCMFD
will be slower than CMFD for intermediate and smaller coarse
mesh sizes (Cho, 2012). This may explain in part why the pCMFD
has not been more widely adopted.

DpCMFD ¼ 1
3Rtr

þ hD; hpCMFD ¼ 1
4

ð1Þ

The idea of optimally diffusive CMFD originates from Larsen
(2003), where an ‘‘exact” diffusion coefficient is developed for dis-
crete transport solutions in planar geometry with a quadratic
source and equal sizes of the fine and coarse meshes. The ‘‘exact”
diffusion coefficient differs from the standard diffusion coefficient
shown in Eq. (1) by adding different coefficients. These are shown
in Eq. (2), in which ln and xn are the 1-D discrete ordinates and
weights, and an is the step characteristics auxiliary equation coef-
ficient defined in Eq. (3).

hod ¼ 1
4

XN
n¼1

lnanxn ð2Þ

ap ¼ 1þ e�RtD=ln

1� e�RtD=ln
� 2ln

RtD
ð3Þ

The h value as a function of optical thickness RtD based on Eq.
(2) is shown in Fig. 1. The value of h changes dramatically as a func-
tion of the coarse cell optical thickness, ranging from the (CMFD)
value of 0 for optically thin coarse grids, to the pCMFD value of
1/4 for optically thick coarse grids. The previous work (Larsen,
2003) investigated the optimal h value from the viewpoint of accu-
racy, but it is straightforward to demonstrate that the ‘‘exact” dif-
fusion solver can efficiently accelerate the discrete transport
calculation in planar geometry with a quadratic source and equal
sizes of the fine and coarse meshes by one iteration since the accel-
erator calculates the same result as the high order solver. Further-
more, such an ‘‘exact” approximation of the diffusion equation to
the transport equation may not be possible for a complicated
geometry especially with multiple fines cells per coarse cell. How-
ever, this motivates the research here to develop an optimal set of
optical thickness dependent h rather than directly using 0 for
CMFD and ¼ for pCMFD.

A similar idea, referred to as generalized coarse-mesh rebalance
(GCMR), was proposed by Yamamoto (Yamamoto, 2005), in which
a Fourier analysis was used to obtain an optimal multiplication fac-
tor that was applied to diffusion coefficients for the coarse mesh
rebalance (CMR) and CMFD methods for solving fixed source prob-
lems. The GCMR method showed improvement in the spectral
radius over the traditional CMR and CMFD methods for monoener-
getic infinite homogeneous problems. However, the analysis
stopped at the theoretical analysis, when the author argued that
the optimal multiplication factor would be too difficult to be deter-
mined for complex geometries.

Recently, an under-relaxation factor (Kelley and Larsen, 2015)
to resolve 2D/1D stability issues was successfully implemented
into MPACT (Michigan Parallel Characteristic Transport) (Zhu
et al., 2015). This work demonstrated that ‘‘optimized” coefficients
derived from the Fourier analysis of the model problem can
improve the convergence of complicated complex realistic hetero-
geneous calculations.

In the work here, an optimally diffusive CMFD (odCMFD)
method is proposed and demonstrated in MPACT. The optimal ‘‘ar-
tificially diffusive” h value is investigated which minimizes the
spectral radius of the coupled high-order transport and low-
order CMFD calculations for the steady state eigenvalue problems
of a variety of cases.

The remainder of this paper is organized as follows. Section 2
presents a detailed overview of the steady state neutron transport
equation and the various CMFD methods, including: the standard
CMFD method, the pCMFD method, and the newly-proposed
odCMFD method. Section 3 is devoted to a Fourier analysis to
determine the optimal h value required for the odCMFD method.
Numerical comparisons of the CMFD, pCMFD and the odCMFD
methods are also provided. Section 4 presents numerical results
for the CMFD method and two of its variants for a two-region
homogeneous problem, a 2D C5G7 problem, a VERA problem 5
and a 2D BWR Peach Bottom Unit 2 core problem using the MPACT
code (MPACT Team, 2013). A summary and final conclusions are
given in Section 5.

2. CMFD accelerated neutron transport methods

2.1. The neutron transport equation

We consider the multi-group steady state neutron transport
equations shown in Eq. (4), where the solution can be obtained
by the Method of Characteristics (MOC), Discrete Ordinates (SN)
methods, etc.

Xrugðr;XÞ ¼ �Rt;gðrÞugðr;XÞ

þ
XG
g0¼1

Z 4p

0
Rs;g0!gðr;XX0Þug0 ðr;X0ÞdX0

þ 1
4p

vgðrÞ
1
keff

XG
g0¼1

mRf ;g0 ðrÞ/g0 ðrÞ: ð4Þ

Using standard notation, the terms in this equation are defined
as:

ug: group g angular flux;
/g: group g scalar flux;
vg: fission spectrum for group g;
Rs;g0!g: scattering cross-section from group g’ to group g;

Rt;g: total cross-section for group g;
m: averaged neutron emitted per fission reaction;

Rf ;g: fission cross-section for group g;
keff : steady state eigenvalue.Fig. 1. Value of h based on Eq. (2).
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