
Parallel GPU implementation of PWR reactor burnup

A. Heimlich 1, F.C. Silva ⇑, A.S. Martinez *

Universidade Federal do Rio de Janeiro, Programa de Engenharia Nuclear Ilha do Fundão, 21945-970, P.O. Box 68509, Rio de Janeiro, RJ, Brazil

a r t i c l e i n f o

Article history:
Received 14 October 2015
Received in revised form 4 January 2016
Accepted 8 January 2016
Available online 29 January 2016

Keywords:
GPU
Parallel processing
Nuclear fuel burnup
Depletion
Multicore
Exponential matrix

a b s t r a c t

This paper surveys three methods, implemented for multi-core CPU and graphic processor unit (GPU), to
evaluate the fuel burn-up in a pressurized light water nuclear reactor (PWR) using the solutions of a large
system of coupled ordinary differential equations. The reactor physics simulation of a PWR reactor
spends a long execution time with burnup calculations, so performance improvement using GPU can
imply in better core design and thus extended fuel life cycle. The results of this study exhibit speed
improvement exceeding 200 times over the sequential solver, within 1% accuracy.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A pressurized light water nuclear reactor (PWR) refueling typi-
cally replaces about a third of the spent fuel every twelve to eigh-
teen months, depending on fuel burnup. Burnup indicates whether
a fuel element must be replaced or reallocated. Refueling is a com-
binatorial optimization problem, and as such, the number of eval-
uated candidate solutions is a function of time and of
computational resources.

Computational tools to model the reactor core are used to eval-
uate its reactivity, spatial neutronic behavior, power distribution,
isotopic inventory and fuel burnup. The fuel burnup can be repre-
sented by a system of first order, ordinary, coupled differential
equations (ODE), accounting for all fissionable actinides and fission
fragment yields for the radioactive reaction chains under analysis.
This approach creates a large system of equations that can be rep-
resented in matrix form Hairer and Wanner (1996).

Recent advancement in graphics processor units (GPU) gave a
boost in parallel computing performance. Use of GPUs can improve
the performance of nuclear reactor physics calculations by provid-
ing T Flops (1012 floating point operations) of computational pro-
cessing power with low cost per watt using desktop computers.
The use of graphic processors and hybrid programming for nuclear
physics problem solving shows great performance improvement

(Heimlich et al., 2011; Waintraub et al., 2011; Pereira et al.,
2013) over sequential procedures.

The main objective of the present study is to provide faster,
expansible and reliable methods to calculate fuel burnup in PWR
reactors. The original contribution of this work is the development
of three methods to obtain the solution of a large system of ordi-
nary coupled differential equations for execution in graphic pro-
cessor units (GPU) and in multicore CPU using parallel
programming techniques. The performances of the three methods
are compared to each other and their respective solutions to a ref-
erence one obtained by a sequential solver.

The first method is Runge–Kutta–Fhelberg’s. It employs a classic
approach to solve a differential equation system. The second is
Jacobi Collocation method, where the matrix exponential is
approximated by Gauss quadrature using Jacobi polynomials. The
final method employs matrix exponential rational approximation
using Padé’s diagonal method.

2. Theory

The nuclide concentration in nuclear reactor’s fuel is described
by a system of differential equations which relate the production
and consumption of each nuclide for each radioactive chain reac-
tion. These changes in nuclide concentration are produced by
decay, fission, radioactive capture and scattering and are described
by Bateman’s equation (Bateman, 1910). Eq. (1) represents the
abundance variation for nuclide k.

http://dx.doi.org/10.1016/j.anucene.2016.01.010
0306-4549/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding authors.
E-mail addresses: adino.heimlich@ien.gov.br (A. Heimlich), fernando@nuclear.

ufrj.br (F.C. Silva), aquilino@lmp.ufrj.br (A.S. Martinez).
1 Principal corresponding author.

Annals of Nuclear Energy 91 (2016) 135–141

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2016.01.010&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2016.01.010
mailto:adino.heimlich@ien.gov.br
mailto:fernando@nuclear.ufrj.br
mailto:fernando@nuclear.ufrj.br
mailto:aquilino@lmp.ufrj.br
http://dx.doi.org/10.1016/j.anucene.2016.01.010
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


dNx
k

dt
ðtÞ ¼

XActinide�series

i¼1;i–k

N x
i ðtÞ

XG
g¼1

rg;x
c;i ðtÞ � rg;x

f ;i ðtÞ þ rg;x
ðn;2nÞ;iðtÞþ

� �
/ g

x ðtÞ

�
XDecay Fractions

y¼1

ki;yN
x
i ðtÞ þ

XProduction Fractions

z–i

kzN
x
z ðtÞ ð1Þ

The abundance variation of nuclide l induced by fission of actinides
is described by Eq. (2).

dNx
l

dt
ðtÞ ¼

XFission Yields

i¼1;i–l

N x
i ðtÞ

XG
g¼1

C g
i;lr

g;x
f ;i ðtÞ � rg;x

c;i ðtÞ
� �

/ g
x ðtÞ

 !

� klN
x
l ðtÞ ð2Þ

Variables x; t and g represent the spatial position, time and
energy group respectively. Nx

k ðtÞ represents actinide k concentra-
tion. Cross sections are represented by rg;x

f ;i ðtÞ;rg;x
c;i ðtÞ and

rg;x
ðn;2nÞ;iðtÞ. Decay constants are ki;y in reaction branch y. The neutron

flux is / g
x ðtÞ and finally C g

i;l represents nuclide l yield from fission
reaction of actinide i.

Differential equations systems (1) and (2) can be represented in
matrix form by Eq. (3) with solution in Eq. (4). This is a well-known
problem (Bellman et al., 1970) in differential equation theory and
its solution can be obtained by matrix exponential methods in at
least nineteen ways (Moler and Van Loan, 2003).

d~NðtÞ
dt

¼ B � ~NðtÞ; ~Nð0Þ ¼ ~N0 ð3Þ

Vector ~Nð0Þ represents the initial nuclide concentration and B is
the depletion matrix.

~NðtÞ ¼ eB t � ~Nð0Þ ð4Þ
Thus, the evolution of nuclide concentrations can be evaluated

using the recursive procedure below and variable Dt ¼ tn � tn�1 is
the burnup step.

~NðtnÞ ¼ eBDt � ~Nðtn�1Þ ð5Þ
This study employed the simulation of reactivity and spatial

power distribution in the reactor core determinated by CNFR
(Alvim et al., 2010; da Silva et al., 2010) (acronym for National
Physics Reactor Code in Portuguese). CNFR simulates the behavior
of PWR reactors by solving a cartesian, tridimensional, double
energy group, steady state approximation of the neutron diffusion
equation. The solution is based on nodal expansion method
(Finnemann et al., 1977) where the reactor is spatially divided in
as many as four thousand nodes. The simulator also evaluates the
fuel burnup and overall calculations with thermohydraulics
feedback.

The CNFR code was implemented in FORTRAN for use in a single
core processor, thus the burnup algorithm must be executed
sequentially node by node. The sequential procedure to evaluate
the burnup computes at least 3000 nodes, each one of the nodes
represented by a system of 37 differential equations which in turn
implies in a matrix operator with the same number of lines.

CNFR evaluates reactor core burnup and inventory by solving
only the most important radioactive reaction chains needed to
maintain the stable production of energy in the core.

GPU hardware architecture achieves high performances when
used to process very large matrices and vectors (Bell and
Garland, 2008). The linear algebra operator direct sum �
(Gantmacher, 1959) was used to create this large sparse matrix
operator. The depletion and inventory operator built to calculate
the burnup and inventory in a GPU was created by joining each
individual node operator, represented by a matrix-valued operator,
in a large sparse matrix operator, with over one hundred thousand

lines and at least five millions non zero elements. Fig. 1 shows the
matrix associated to the depletion operator for one node and eight
nodes matrices.

The next sections explain the building of this large matrical
operator and the implemented methods.

2.1. Depletion matrix operator

The GPU based constructor, with linear algebra manipulation,
storage and input/output procedures, was developed using
Compute Unified Device Architecture (CUDA) (Luebke, 2008) and
C++ Standard Template Library (STL) to provides access and execute
sparse linear algebra routines using library cuSparse (Naumov
et al., 2010) and cuBlas (Nvidia, 2008).

Eq. (3) shows the ODE system written in matrix form. The
matrix operator B must be rebuild in each step of the burnup eval-
uation because the sparsity of the matrix operator B changes with
spatial position and actinide concentration. This procedure builds
the operator B with CNFR data arrays, including microscopic cross
sections (total, absorption, capture) of all nuclides, actinides micro-
scopic cross sections (fission, ðn;2nÞ), fission yields and neutron
flux.

The matrix operator is built using the Compressed Oriented Ordi-
nates (COO) format and then converted to Compressed Sparse Row
(CSR) format to improve performance (Bell and Garland, 2008).
The building of the operator can be extended to evaluate decay

chains and fission yields for other actinide series, e.g., the Th232

chain.
The matrix container defined above is assigned by each method

operator building in this work. These operators employ the sparse
matrix construct to obtain a function, whether as Sparse Matrix
Vector Multiplications (SpMv) in Runge–Kutta–Fhelberg or Power
of Matrix in Jacobi Collocation and Padé’s Approximation methods.

2.2. Runge–Kutta methods

Runge–Kutta methods (Hairer et al., 1989) are reliable and
widely used to find a solution to an initial value problem
(Dormand and Prince, 1980) of the form:

y0ðxÞ ¼ f ðx; yðxÞÞ; yðx0Þ ¼ y0 ð6Þ
and to obtain an approximation of yðxÞ using a truncated Taylor ser-
ies. This method finds an approximation with

yn ¼ yn�1 þ h �
Xs
i¼1

biki þ Oðhsþ1Þ: ð7Þ

Similarly, the ODE system can be solved on vector form by the
Eq. (8).

~yn ¼~yn�1 þ h �
Xs
i¼1

bi
~ki þ Oðhsþ1Þ ð8Þ

S is the order of the method and ~ki is given by Eq. (9)

~ki ¼ f ~yn�1 þ h �
Xs
j¼1

aij~kj; tn þ cih

 !
ð9Þ

The coefficients aij are defined by a quadrature rule and f is the
matrix operator.

2.2.1. Runge–Kutta–Fhelberg
In this approach, Shampine (1977) uses an adaptive time-step

(h ¼ h � s) correction, calculated by the fifth-order and fourth-
order approximations difference. The Eq. (10) shows the vectors
~ki calculi and the number of SpMv operations.

136 A. Heimlich et al. / Annals of Nuclear Energy 91 (2016) 135–141



Download English Version:

https://daneshyari.com/en/article/1727989

Download Persian Version:

https://daneshyari.com/article/1727989

Daneshyari.com

https://daneshyari.com/en/article/1727989
https://daneshyari.com/article/1727989
https://daneshyari.com

