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a b s t r a c t

This paper presents two parts, real-time process surveillance unit and fault diagnosis unit, which are sep-
arated from each other. However, these units are connected by trigger-rules in a real-time expert system.
The design structure that has been adopted is capable of inspecting errors and revising the model.
Multilevel Flow Model (MFM), which is a method for functional modeling, is introduced briefly and

illustrated with a reactor coolant system. Utilizing functional modeling method to represent system
knowledge, this modeling method is especially useful when the domain experts are not available.
Considering issues such as loop modeling and mutually exclusive events inevitably exist between the

observation points, a novel modeling technology called observation points’ protection was used to build a
generic fault model and preserve the statuses of observation points during reasoning within an expert
system. This paper also presents minimal candidate and domains of interpretation, which are especially
useful for finding the fundamental root cause when multiple faults occur.
The process surveillance and diagnostic system is implemented on the platform of G2, which is an envi-

ronment for developing real-time expert systems. The emulation test was conducted and it has been pro-
ven that the fault diagnosis expert system can identify the faults correctly and in a timely manner.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In order to meet the increasing energy needs in the world, cur-
rent and future widespread usage of nuclear reactors depend
mostly on the safe and cost-effective utilization of nuclear systems
and operational strategies (Pang and Xia, 2014). Developing diag-
nostic methodologies have become increasingly significant for
nuclear power plants (NPPs) in order to provide smooth and unin-
terrupted plant operation in the face of varying power demand
(Ablay and Aldemir, 2013).

Faults are any unpermitted deviations in one or more of the
characteristic properties of the system from the acceptable, usual
and standard conditions (Yellapu et al., 2015). Fault detection
and diagnosis can be broadly classified into methods that utilize
qualitative model-based methods, quantitative model-based
methods, and process history based methods
(Venkatasubramanian et al., 2003). Model-based methods require
a priori knowledge about the domain as well as the relationships
between the distinct patterns of fault evolution and the different
faults (Du and Van, 2012). Accordingly, analytical model-based

methods can be difficult to implement for systems with complex
nonlinear dynamics, and are mostly limited to linear applications
or linear model approximations (Evsukoff and Gentil, 2005). In
contrast to the model-based approaches where a priori knowledge
(either quantitative or qualitative) about the process is needed, in
process history based methods, only the availability of large
amount of historical process data is needed, and one of the major
methods that extract qualitative history information is the expert
system.

The approach of the expert system has become the most popu-
lar branch of artificial intelligence, which aims to design a fault
diagnosis system. For the expert system, an advantage is the inde-
pendence of detailed knowledge of plant behavior. However, a dis-
advantage is that fault situations are defined by patterns of
observed plant variables values (Lind and Zhang, 2014). There is
difficulty in acquiring and representing the knowledge correctly,
it may accordingly be difficult to diagnose faults which have not
been encountered before (Hong et al., 2010).

Under this circumstance, the functional modeling method is
introduced. A functional modeling method called Multilevel Flow
Model (MFM) was utilized to represent the knowledge of the sys-
tem, especially when the domain experts are not available. Mean-
while, the combination of the MFM and expert system constituting
as the domain map that can serves as input to the reasoning
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machine. In this way, it is easier for developers to design the
knowledge base and develop a fault diagnosis expert system. This
viewpoint has also been mentioned in authors’ previous article
(Wang et al., 2016).

However, with the growth of the acquired knowledge, the
issues of loop modeling and mutually exclusive events inevitably
exist in the generic fault model, but these are not considered in
the previous work.

In order to describe above-mentioned issues, for example, the
parameters that are used in NPPs can divided into two categories;
these are observed points and unobserved points. The observation
points, that is, their statuses are specified. They cannot be changed,
which has been confirmed during reasoning in the expert system.

However, some observation points are mutually exclusive
events, meaning that they cannot happen at the same time. Fur-
ther, loop modeling serves as one relationship also exist between
some observation points. In this case, the statuses of observation
points may be changed during reasoning in the expert system.

Within this context, one kind of modeling technology, the
observation points’ protection modeling, was used for protecting
the statuses of observation points and solving loop reasoning
within a generic fault model. The observation points’ protection
technology will be explained in detail in Section 4.4.2.

As for the multiple faults and the occurrence of many symp-
toms, it is necessary to identify the genuine faults, or fundamental
root cause, from the suspect candidates. Inspecting the causal
chain is one method to find the fundamental root cause. However,
it is too cumbersome for operators to do this all the time.

Within this context, this paper presents the minimal candidate
that can identify the fundamental root cause or their combination
automatically. The detailed explanation of the minimal candidate
will be presented in Section 6.

The integrated real-time process surveillance and diagnostic
System (RTPSDS) was implemented on the platform of the G2
expert system. Gensym’s flagship G2 expert system is the world’s
leading real-time engine platform (Gensym Corporation, 2009).

This rest of the paper is organized as follows: In this section, the
background and motivation are presented. Section 2 provides a
brief description of the MFM. Section 3 is devoted to describing
the expert system. In Section 4, there is a description on how to
design a real-time process surveillance and diagnostic system by
utilizing the MFM and G2 expert system, including the framework
of RTPSDS described in Section 4.1, the design of process surveil-
lance described in Section 4.2, the design of trigger rules described
in Section 4.3, and how to design a fault diagnosis unit as described
in Section 4.4. In this section, the combination of MFM and expert
system and the modeling technology of observation points’ protec-
tion are introduced. The simulation tests are presented in Section 5,
while the design of the minimal candidate is discussed in Section 6.
The conclusions of this work are presented in Section 7.

2. Multilevel Flow Model

2.1. Basic theory of MFM

The Multilevel Flow Model (MFM) is a methodology for model-
ing industrial processes on several interconnected levels of means
and part-whole abstractions. The basic idea of MFM is to represent
an industrial plant as a system which provides the means required
to serve purposes in its environment (Lind, 1994, 2011a,b). The
MFM represents the goals and functions of process plants involved
in the interactions between the flows of mass, energy, and infor-
mation (Lind, 2011a,b). It describes the system goals, functions,
and components needed to model the process of plants by using

some specific graphical symbols (Yang et al., 2014). The symbols
of MFM are as shown in Fig. 1.

In the MFM, the goals are the basis of modeling thought to real-
ize the functions of each part of the system, such as ‘‘supply elec-
tricity”. and the function nodes consisting of functions relate to
goals to represent the capabilities of a system, for example, ‘‘trans-
port coolant”, while the components represent the physical struc-
tures of a system, such as a piece of pipeline. After being invented
by Lind (1990) at the Technical University of Denmark, MFM has
been proven to be effectively contributing to several diagnostic
algorithms, such as measurement validation, alarm analysis, failure
model analysis, sensor fault detection, and fault diagnosis (Öhman,
1999, 2001, 2002; Dahlstrand, 1998; Larsson, 1996).

3. Expert system

Artificial Intelligence (AI) is that branch of computer science
that seeks, in some measure, to emulate human behavior, while
expert systems are a special type of computer software for which
the objective is to reproduce the capabilities of an exceptionally
talented human or groups of humans (John and Takashi, 1989).
This is achieved by encoding human experience in various knowl-
edge representation schemes. Expert systems differ from conven-
tional algorithmic programming in two aspects.

(1) As new information is obtained, it can be added to the
knowledge base without revising the inference engine. That
is, no reprogramming is needed.

(2) An expert system can at any time provide the rationale for
its conclusion. It does this by keeping track of the chain of
deductions that supports each particular conclusion.

In conclusion, the main advantages in development of expert
systems for diagnostic problem-solving are: ease of development,
transparent reasoning, the ability to reason under uncertainty
and the ability to provide explanations for the solutions provided.

The main components in an expert system development
include: knowledge acquisition, choice of knowledge representa-
tion, the coding of knowledge in a knowledge base, the develop-
ment of inference procedures for diagnostic reasoning and the
development of input–output interfaces (Venkatasubramanian
et al., 2003). However, the key element of the expert system is
knowledge base, which contains two aspects: knowledge acquisi-
tion and knowledge representation. The knowledge acquisition
mainly acquires knowledge from domain experts and it is one of
the most difficult and time-consuming activities in developing
knowledge-based systems. The premise of designing an excellent

Fig. 1. Symbols of Multilevel Flow Model.
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