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a b s t r a c t

The space–time neutron diffusion equations with two energy groups and average one group of delayed
neutrons are a system of stiff partial differential equations. The efficient computational system is pre-
sented to solve the neutron diffusion equations based on finite difference and theta methods. Finite dif-
ference method is used to reduce the partial differential equations to the ordinary differential equations.
These ordinary differential equations are rewritten in a matrix form. Theta method is developed using the
eigenvalues and corresponding eigenvectors of the coefficient matrix. These eigenvalues and the corre-
sponding eigenvectors are calculated analytically. The efficient computational system is applied to
multi-dimensional transient neutron diffusion equations with two energy groups and one group of
delayed neutrons in the homogenous and heterogenous nuclear reactors. The results of the proposed
method are in agreement with the results of traditional methods. The efficient computational system
reduces the computational time (CPU) by about 30% compared with the faster reference method. So,
the efficient computational system is considered a fast technique more than theta method and traditional
numerical codes.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For nuclear reactors safety, scientists are looking for an accurate
knowledge of the time-dependent spatial neutron flux density in
nuclear reactors. For this reason, accurate and efficient numerical
codes are required for solving the space–time neutron diffusion
equations in nuclear reactors. In nuclear reactor problems, espe-
cially those involving safety considerations, the coefficients of the
neutron diffusion equations depend on parameters such as the
neutron power level, precursor concentration of delayed neutrons
groups, time, space and other parameters. The space–time neutron
diffusion equations with two energy groups and average one group
of delayed neutrons consider a stiff system of the partial differen-
tial equations. Search for the efficient and accurate methods is con-
sidered complicated. Then, the aim is to develop efficient and
accurate technique to solve this stiff system.

To substantiate the feasibility and efficiency of the proposed
method, results should be compared with results of the traditional
codes. The TWIGL code (Yasinsky et al., 1968; Hageman and
Yasinsky, 1969) is one of important traditional codes. The TWIGL
program uses a specified h-method of time-differencing with the
fluxes at each time step being determined by the cyclic Chebyshev

polynomial iterative method. The LUMAC code (McCormick, 1969)
assumes that the variation in the neutron flux at each mesh point
can be represented as an exponential function of time over each
integration time step. Additionally, the assumption is made that
the transverse leakage in one spatial direction can be approxi-
mated by a pointwise transverse buckling over one time step.
The MITKIN method (Reed and Hansen, 1970) uses a particular
alternating direction semi-implicit method referred to as an alter-
nating direction explicit method. It has incorporated an exponen-
tial transformation of variables which improves the truncation
error. The SADI code (Wight et al., 1971) is a matrix splitting
method based on an alternating direction implicit scheme. The
3DKIN code (Ferguson and Hansen, 1973) is the nonsymmetric
alternating direction explicit method which is extended to three
dimensional geometries. The MADI method (Chen et al., 1992) is
a mixed implicit–explicit three level alternating direction implicit
method. The temporal subdomain method TSM (Utku and
Christenson, 1994) is based on a spatial finite element formulation.
Padé11 approximation method (Aboanber and Nahla, 2006)
applies the Crank–Nicholson approximation for the exponential
function of the coefficients matrix for all mesh points of the reac-
tor. Adaptive matrix formation (AMF) method (Aboanber and
Nahla, 2007) is characterized by the expansion of the coefficients
matrix for all mesh points of the reactor into two different
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matrices, specified for each mesh point. The generalization of the
analytical exponential model GAEM (Nahla and Al-Ghamdi, 2012)
is based on the separation of variables, the eigenvalues and the cor-
responding eigenvectors of the coefficient matrix. Fundamental
matrix method (FMM) (Aboanber et al., 2014) is based on the sep-
aration of variables and the inverse of fundamental matrix.

Padé11 approximation and adaptive matrix formation (AMF)
method are related to the proposed method, efficient computa-
tional system (ECS), in this work. The difference between Padé11
approximation, AMF and ECS methods is explained as follows: let
us assume that n is the number of spatial mesh point, and m is
the number of neutron energy groups and the number of delayed
neutron precursors. Padé11 approximation is based on the inverse
of a matrix XN�N , where N ¼ n�m. The AMF method is based on
the inverse of n times of a matrix Xm�m. But the proposed method
ECS does not based on the inverse of any matrix. So, the proposed
method ECS will be faster than AMF method which is faster than
Padé approximation.

In this work, the space–time neutron diffusion equations with
two energy groups and one group of delayed neutrons are intro-
duced as partial differential equations in Section 2. These equations
are reduced to ordinary differential equations using finite differ-
ence method. These ordinary differential equations are rewritten
in a matrix form in Section 3. Theta method is presented to solve
the matrix form of the ordinary differential equations in Section 4.
The efficient computational system using the eigenvalues and cor-
responding eigenvectors of the coefficient matrix is presented in
Section 5. These eigenvalues and corresponding eigenvectors are
calculated analytically in Section 6. The efficient computational
system is applied to solve two energy groups transient neutron dif-
fusion equations with one group of delayed neutrons in multi-
dimensional homogenous and heterogenous nuclear reactors in
Section 7. The results of the proposed method are discussed and
compared with the results of traditional methods. The general con-
clusions and future work are presented in Section 8.

2. Transient neutron diffusion model

The concern here is focused on the most common approxima-
tion of the time-dependent neutron diffusion equations with two
energy groups and one group of delayed neutrons. The derivation
of the neutron diffusion equations from the continuous energy
transport equations is described in detail in a number of references
(Duderstadt and Hamilton, 1976; Stacey, 2007; Baudron et al.,
2014). The space–time two energy groups reactor kinetics equa-
tions can be written as
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Average one group of delayed precursor concentration satisfies
the equation
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where, U1ðx; y; z; tÞ and U2ðx; y; z; tÞ are the fast and thermal neutron
flux ðcm�2s�1Þ;Cðx; y; z; tÞ is the precursor concentration of delayed
neutrons ðcm�3Þ;v1 and v2 are the fast and thermal velocity of
the neutron ðcm s�1Þ;D1ðx; y; zÞ and D2ðx; y; zÞ are the fast and ther-
mal diffusion coefficient ðcmÞ;Ra1 ðx; y; zÞ and Ra2 ðx; y; zÞ are the fast
and thermal absorption cross-section ðcm�1Þ;Rf 1 ðx; y; zÞ and
Rf 2 ðx; y; zÞ are the fast and thermal fission cross-section
ðcm�1Þ;Rs12 ðx; y; zÞ is the scattering cross-section ðcm�1Þ from fast
to thermal, m1 and m2 are the fast and thermal neutrons emitted
per fission, k is the decay constant ðs�1Þ, and b is the fraction of
delayed neutrons.

Eqs. (1)–(3) are completed by the appropriate initial and bound-
ary conditions. Regarding the boundary conditions, these equa-
tions are solved subject to the boundary conditions at the inner
and outer surfaces of the reactor. The boundary condition can be
written in general as

pgDgðx; y; zÞrUgðx; y; z; tÞ:nþ qgUgðx; y; z; tÞ ¼ 0;

g ¼ 1;2 8ðx; y; zÞ 2 R: ð4Þ

where n is an outward unit normal to surface R of reactor. If qg is
equal to zero on part of the boundary, the normal neutron current
flux Jgðx; y; z; tÞ is zero on that part. If pg is equal to zero on part of
the boundary, the corresponding neutron flux Ugðx; y; z; tÞ is equal
to zero on that part. Finally, the general case pg and qg – 0 corre-
sponds to an extrapolation condition.

At t ¼ 0, the initial conditions satisfy

Ugðx; y; z;0Þ ¼ Ugðx; y; zÞ; g ¼ 1;2 and

Cðx; y; z;0Þ ¼ b
k

m1Rf 1 ðx; y; zÞ
keff

U1ðx; y; zÞ þ m2Rf 2 ðx; y; zÞ
keff

U2ðx; y; zÞ
� �

ð5Þ

The initial fast and thermal neutron flux usually correspond to a

critical state obtained from Eqs. (1) and (2), with @Ug ðx;y;z;tÞ
@t ¼ 0. The

resulting equations, in which the spatial variables have been sup-
pressed, are

r � D1ðx; y; zÞrU1ðx; y; zÞ � Ra1 ðx; y; zÞ þ Rs12 ðx; y; zÞ
� �

U1ðx; y; zÞ

þ m1Rf 1 ðx; y; zÞ
keff

U1ðx; y; zÞ

þ m2Rf 2 ðx; y; zÞ
keff

U2ðx; y; zÞ ¼ 0 ð6Þ

r � D2ðx; y; zÞrU2ðx; y; zÞ � Ra2 ðx; y; zÞU2ðx; y; zÞ
þ Rs12 ðx; y; zÞU1ðx; y; zÞ ¼ 0 ð7Þ

where keff is the effective fission multiplication factor.
This work presents efficient and accurate technique to solve

these stiff partial differential equations. This technique is based
on the finite difference method to reduce these partial differential
equations to ordinary differential equations. Also, it depends on
the theta method to solve the matrix form of the ordinary differen-
tial equations.

3. Finite difference method

The neutron leakage terms r � Dgði; j; kÞrUgði; j; k; tÞ; g ¼ 1;2 for
three-dimensional Cartesian geometry are approximated using the
seven-point central finite difference scheme (Aboanber and Nahla,
2007; Nahla et al., 2012)
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