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a b s t r a c t

The solution of point kinetics equations can predict the neutron density variation during the operation of
a nuclear reactor, which is very important in reactor safety and analysis. The point kinetics equations are
coupled nonlinear ordinary differential equations, which are stiff and difficult to solve. In this paper, the
Magnus expansion is proposed to solve the neutron point kinetics equations. It is convenient to construct
the exponential form of the solution with the Magnus expansion. The present method is tested using a
variety of cases with step, ramp, sinusoidal and temperature feedback reactivity insertions. The results
indicate that the method is accurate for thermal and fast reactors.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In nuclear reactor dynamics, the point kinetics equations
describe the variation of the neutron density and delayed neutron
precursor concentrations as the reactivity changes. The equations
become complex and nonlinear when the reactivity depends on
the neutron density and it is the common situation when temper-
ature feedback arises. As the prompt and delayed neutron lifetimes
are different in the magnitude orders, the system of the kinetics
equations is stiff. Small time steps are required in many numerical
methods to alleviate the stiffness.

Many methods for solving point kinetics have been proposed
over the past 50 years. Chao and Attard (1985) proposed the
stiffness confinement method which confines the stiffness to the
equation for the prompt neutron. Aboanber and Nahla (2002b)
described Padé approximations for solving the point reactor kinet-
ics equations with multi group of delayed neutrons with constant,
ramp and temperature feedback reactivity. They (2002a, 2003) also
obtained the solution of a point kinetic equation using exponential
mode analysis and generalization of analytical inversion method. Li
et al. (2009) presented the better basis function method (BBF) for
solving the point kinetics equations and investigated the power
transients caused by various types of reactivity insertion for
thermal reactors with multi group of delayed neutrons.

Kinard and Allen (2004) proposed the numerical solution of the
point kinetics equations based on piecewise constant approxima-
tion (PCA). They used average value to approximate the varied
reactivity in one time step, and then solved the simplified equa-
tions exactly, and they proved that the method converges with
order 2. Picca et al. (2013) solved the point kinetics equations with
a new technique which is based on PCA. They tackled the error
term into the source term, and iteratively corrected it. This method
is called enhanced piecewise constant approximation (EPCA), and
showed extreme accuracy.

McMohan and Pierson (2010) used Taylor series method (TSM),
and Nahla (2011) applied TSM to solve the point kinetics equations
with the Newtonian temperature feedback reactivity. Kim et al.
(2014) described a numerical solution to the point kinetics equa-
tions using Taylor–Lie series combined with a scaling and squaring
technique. Ganapol (2013) combined implicit backward Euler
finite difference (BEFD) with Richardson extrapolation technique
which can obtain a highly accurate solution. Patra and Ray
(2014) introduced Haar wavelet operational method (HWOM) for
solving the point kinetics equations. They expanded the solution
in Haar wavelet series in one time step and integrated Haar
wavelet.

The Magnus expansion has been successfully applied in many
areas of physics and chemistry, from classical Hamilton mechanics
to atomic and molecular physics, nuclear magnetic resonance,
quantum electrodynamics, and time-independent Schrödinger
equation (Blanes et al., 2009). On the mathematical side, it can
be used as an efficient numerical integrator.

http://dx.doi.org/10.1016/j.anucene.2015.11.021
0306-4549/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Department of Engineering Physics, Tsinghua
University, Beijing 100084, China.

E-mail address: caiyun12@mails.tsinghua.edu.cn (Y. Cai).

Annals of Nuclear Energy 89 (2016) 84–89

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2015.11.021&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2015.11.021
mailto:caiyun12@mails.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.anucene.2015.11.021
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


Magnus expansion is a widespread tool to construct approxi-
mate exponential representations of the solution of the non-
autonomous linear differential equations (Casas and Iserles,
2006). The exponent of the solution in Magnus expansion is
expanded as an infinite series. It is well known that PCA is gener-
ally inexact unless the time-dependent reactivity is step function.
In fact, PCA can be viewed as the special Magnus expansion when
the exponent is approximated by the first term. And it is conve-
nient to construct the high order method using Magnus expansion.

In this present work, Magnus expansion is presented for solving
the point kinetics equation without/with Newtonian temperature
feedback effects. The numerical results of this method are com-
pared with other methods for numerous cases of different reactiv-
ity insertion.

2. The point kinetics equations

The point reactor kinetics equations with multi-group delayed
neutrons and Newtonian temperature feedback reactivity are the
stiff nonlinear ordinary differential equations as follows:

dn
dt
¼ q� b

K
nðtÞ þ

Xm
i¼1

kici ð1Þ

dci
dt
¼ bi

K
nðtÞ � kici; i ¼ 1; . . . ;m ð2Þ

qðtÞ ¼ cðtÞ � aðTðtÞ � T0Þ ð3Þ

dTðtÞ
dt
¼ KcnðtÞ ð4Þ

where n is the neutron density, ci is the ith precursor density, q is
the time-dependent reactivity, bi is the ith delayed fraction and b
is the total delayed fraction, K is the neutron generation time,
and ki is the ith group decay constant, m is the total number of
delayed neutron groups. T is the temperature of the reactor, T0 is
the initial value of the temperature, c(t) is the prescribed reactivity,
a is the temperature coefficient of reactivity, and Kc is the reciprocal
of the thermal capacity of reactor.

The system can be simplified if the Eq. (3) is differentiated and
substituted into Eq. (4)
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The final nonlinear reactor kinetic model is described by the
Eqs. (1)–(3), and (5). Here, the equation of the temperature is not
solved explicitly because there is a simple algebraic relationship
between the temperature and the reactivity function. The nonlin-
ear system in the compact matrix form is written as follows:
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However, it can be written in another form which is more conve-
nient to deal with. By increasing one dimension, the system can
be described equivalently as following:
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The linear reactor kinetic model can be viewed as the special
case of the nonlinear system. However, it will increase unnecessary
computation. Here, the linear reactor kinetic model is viewed as
the different model, and described similarly as Eq. (7)

d
dt

zðtÞ ¼ ALðtÞzðtÞ; ALðtÞ ¼

qðtÞ�b
K k1 . . . kN
b1
K �k1
..
. . .

.

bN
K �kN

0
BBBBB@

1
CCCCCA
; z ¼

n

c1

..

.

cm

2
66664

3
77775

ð8Þ
where the reactivity function q(t) is the known function and equals
c(t).

The initial condition of the linear/nonlinear reactor kinetic
model is that qð0Þ ¼ q0;nð0Þ ¼ n0; cið0Þ ¼ n0bi=ðkiKÞ.

3. The Magnus expansion

Here, the following model is considered which contains the
linear and nonlinear reactor kinetic model:

d
dt

YðtÞ ¼ Aðt;YÞYðtÞ ð9Þ

According to the literature (Casas and Iserles, 2006), if the
solution above is represented in the form of matrix exponential

YðtÞ ¼ eXðtÞY0 ð10Þ
then X satisfies the differential equation by the means of the Lie
algebra:

d
dt

XðtÞ ¼ dexp�1X ðAðt; eXðtÞY0ÞÞ;Xð0Þ ¼ 0: ð11Þ

Here
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where the start time is considered to be 0, Bk is the kth Bernoulli
number and the definition of adm can be recursively written:

ad0
XC ¼ C; admþ1

X C ¼ ½X; adm
XC� ð13Þ

where [X, Y] = XY � YX is the commutator of X and Y. Eq. (11) is
solved by Picard’s iteration and X is approximated
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However, the summation needs to be truncated, and the practical
implement is the formulas:
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According to the literature (Casas and Iserles, 2006), the formulas
above can achieve the order up to m

X½m�ðtÞ �XðtÞ ¼ Oðtmþ1Þ ð16Þ
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