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a b s t r a c t

We consider transport of light, neutrons, or any uncharged particles in a straight duct of circular cross
section. This problem first came to fashion some 30 years ago when Pomraning and Prinja formulated
their so called ‘‘pipe problem’’. In the years to follow, investigators applied essentially every known
method of numerical solution, including MMRW’s Wiener–Hopf – except possibly one. This presentation
concerns that particular numerical solution, which arguably seems to be the most efficient of all.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is hard to believe that it has been 30 years since Jerry
Pomraning and then, post doc, Anil Prinja (having recently com-
pleted his dissertation at Queen Mary with MMRW) published
their classical work on the solution to the 1-D analogue to the 3-
D straight duct problem (Prinja and Pomraning, 1984). The origin
of the ‘‘pipe problem’’ as it is called, is for a fusion application to
eliminate neutral particles from a proposed tokamak design.
Their work had all the synergetic features of the collaboration
between the two transport theorists—producing a physically and
mathematically insightful paper that was to have a life of its
own. Ed Larsen then showed (Larsen, 1984) (as only EWL can
do), the Pomraning–Prinja model was merely the ‘‘tip of the ice-
berg’’ and lent itself to a much deeper theory yielding higher order
methods that improved upon numerical precision and physical
relevance of the model. Not surprisingly, MMRW took up the chal-
lenge in an entirely different physical context—light transport in a
duct, where he applied his signature Wiener–Hopf technique in a
most delightful presentation (Williams, 2007). In the meantime,
essentially all the known transport solution methodologies at the
time came to bear on this problem (Larsen et al., 1986; Garcia
et al., 2000; Jing et al., 2010; Jing and Xiang, 2010; Garcia and
Ono, 1999a; Garcia and Ono, 1999b)—save one.

In the following, we apply the method of adding and doubling
as a reformulation of the discrete ordinate method in a new

response matrix form. While doubling is well known in radiative
transfer, it is not so in neutron transport theory, where the duct
problem originated. As shown, doubling eliminates the need for
sweeps in the directions of particle travel, yet assumes a simple
fully discretized form. The method, called the Response Matrix
SN Method (RMSNM), is based on the conventional diamond dif-
ference algorithm to include doubling to avoid iteratively sweep-
ing back and forth through the duct. The method uniquely
applies doubling coupled to convergence acceleration to achieve
extreme precision. It features precision through simplicity and will
be described in a way that seems to be new, at least to this author
and I am sure to others.

Relying on the informative description of the duct transport
problem and its mathematical formulation given by Garcia
(Garcia, 2013), we first state the appropriate transport equation,
followed by a change of ‘‘angular variable’’ to the range [0,1].
Next, a Gauss–Legendre quadrature approximates the scattering
integral through contiguous half-ranges. Continuing with a trape-
zoidal integration over a spatial interval (which gives the diamond
difference approximation), the fully discretized discrete ordinates
transport equation emerges. One then forms the response matrix
for the exiting surface angular and interior distributions as well
as for the pipe reflectance and transmittance. Finally, we demon-
strate high order numerical performance in comparison to the
ADO method.

2. The discrete ordinates balance equation

The deceptively simply looking transport equation in the duct
of area A and circumference L reads as:
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where s is the spatially scaled variable

s � L
pA

z:

The obvious difference between this transport equation and say,
the neutron transport equation, is the variable n, in (�1,1), rather
than in [�1,1], assuming the role of the ‘‘angular variable’’. A
change of the n � dependent variable enables transformation to
the finite interval [0,1] however.

The duct is of length Z with entering particles in the half-range
at the near end and none at the far end according to:

Yð0; nÞ ¼ 1
Yðs0;�nÞ ¼ 0;

ð1cÞ

where n 2 ½0;1Þ for a pipe of dimensionless length s0 and a circular
cross section to give

s0 �
2
p

Z
q
: ð1dÞ

Only an isotropically entering particle distribution is considered
here.

2.1. Angular discretization

Writing the scattering integral as:Z 1

�1
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for the change of variable

n0 ¼ l0

1� l0
; l0 2 ½0;1�:

By applying the Nth-order shifted Legendre–Gauss quadrature
approximation on interval [0,1], Eq. (2) becomesZ 1

�1
dn0wðn0ÞYðs; n0Þ ’

X2N

m0¼0

xm0wm0Ym0 ðsÞ; ð3aÞ

where for m ¼ 1; . . . ;N

xm ¼ xNþm ¼ 1
ð1�lmÞ

2 vm

nm ¼ lm
1�lm

nNþm ¼ �nm:

ð3bÞ

lm; vm are the Gauss-quadrature abscissae and weights respec-
tively. The abscissae lm come from

PNðxmÞ ¼ 0; xm � 2lm � 1; m ¼ 1; . . . ;N;

where PlðxÞ is the lth order shifted Legendre polynomial satisfying
the usual recurrence

lþ 1
2lþ 1

Plþ1ðxÞ ¼ xPlðxÞ �
l

2lþ 1
Pl�1ðxÞ; P0ðxÞ � 1; P�1ðxÞ � 0:

Therefore, the recurrence in vector form is

APm ¼ xmPm �
N

2N � 1
Sm; m ¼ 1; . . . ;N ð4aÞ

with
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2666666664

3777777775
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and

Pm � P0ðxmÞ P1ðxmÞ . . . PN�1ðxmÞ½ �T

Sm � ½0 0 . . . PNðxmÞ �T :

The abscissae, therefore, are the eigenvalues of matrix A

½A� xmI�Pm ¼ 0; m ¼ 1; . . . ;N ð5aÞ

giving

lm ¼
1
2
ð1þ xmÞ ð5bÞ

and the weights are (Stegun and Abramowitz, 1994)

vm ¼
2ð1� x2

mÞ
ðN þ 1Þ2½PNþ1ðxmÞ�2

: ð5cÞ

On substitution of the scattering integral approximation of Eq.
(3a) at the abscissae, Eq. (1a) becomes the following angularly dis-
cretized approximation to the transport equation for the angular flux

nm
d

ds
þ 1

� �
YmðsÞ ¼

X2N

m0¼0

xm0wm0Ym0 ðsÞ; ð6Þ

where

Yðs; nmÞ ¼ YmðsÞ þ eðs; nmÞ

with the combined quadrature and discretization error eðs; nmÞ
neglected. Note that since the Gauss Quadrature converges to the
exact integral for a sufficiently smooth integrand as O(N-4), Ym(s)
also converges to the exact solution for every m.

More conveniently, Eq. (6), in vector form for the bi-angular flux
vectors in the negative and positive directions, becomes

� d
dsþM�1ðI � CÞ

h i
Y�ðsÞ ¼M�1CYþðsÞ

d
dsþM�1ðI � CÞ
h i

YþðsÞ ¼M�1CY�ðsÞ
ð7a;bÞ

with

YþðsÞ � ½Y1ðsÞ Y2ðsÞ . . . YNðsÞ �T

Y�ðsÞ � ½YNþ1ðsÞ YNþ2ðsÞ ::: Y2NðsÞ �T
ð7c;dÞ

and

C � wW
w � fwm; i;m ¼ 1; . . . ;Ng
W � diagfxm; m ¼ 1; . . . ;Ng
M � diagfnm; m ¼ 1; . . . ;Ng:

ð7e; f ; g;hÞ

2.2. Spatial discretization and single layer response

Uniformly discretizing the interval ½0; s0� into n intervals with
h � s0=n characterizes the spatial variation with an additional
trapezoidal rule integration of Eqs. (7a,b) over interval ½sj; sjþ1� to
give
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