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We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix for-
malism. After reviewing some classical problems in homogeneous media we discuss transport in materi-
als whose density may vary. There we achieve a significant contraction of the underlying Telegrapher’s
equation. We conclude with a discussion of stochastics, treated by the “first-order smoothing
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Mike’s heroic 40 years as editor of Annals of Nuclear Energy has
earned him a place in the Pantheon of Great Editors, along with
Sam Goudsmit of Physical Review (a mere 25years) and S.
Chandrasekhar of The Astrophysical Journal (20 years). In an age
of scholarly excess he has kept high the standards of our field,
walled it from the slack and sloppy.

How he has managed this task, while producing several hundred
scientific papers of distinction, along with books and lecture-notes
remains, after many years, a mystery. Either, hidden in his blood-
line is a Hungarian (therefore Martian, and extraplanetary-) strain
which he shares with his talented cousins (Wigner, Teller, Szilard,
von Neumann..) or as I theorized some years ago, Mike has access
to a special source of energy, perhaps nuclear, not mundane bio-
chemical, forbidden us mortals.

Cheers, Mike, and thank you for four decades of service and a half-
century of friendship.

1. Introduction

There has been continued and significant concern in the trans-
port community about transport of neutrons and radiant energy in
unusual media, or in regular arrangements subject to randomness.
In nuclear engineering one might have a bed of randomly arranged
fuel particles as a host (Vasques and Larsen, 2014), or a boiling
moderator; in bio-physics one encounters near-infra-red radiation
diffusing through the complexities of animal tissue. And there are
the active fields of “ocean-optics” and radiation transport through
atmospheres.

Introducing stochasticity into the mesoscopic equations of
transport theory is a second application of that concept, for the
transport equations themselves result from a stochastic treatment
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of the exact equations of motion. This second averaging deals with
fluctuations on a larger scale and increases the calculational chal-
lenge. In the last several decades heroic and sophisticated response
to the challenge has been made by colleagues (Akcasu, Larsen,
Prinja, Sanchez, Williams...) stimulated, perhaps, by Gerry
Pomraning’s 1991 monograph (Pomraning, 1991). Mike Williams’
many contributions have been rich and broad. For examples, see
(Williams, 2000a,b, 2006).

Our concern here is with the subject of “tissue optics.” (Tuchin,
2000) Its connection with medicine at both the research and clini-
cal levels has stimulated a great amount of activity (Vo-Dinh,
2003). To a transport theorist, the tools used there in analysis
and design appear somewhat naive. The purpose of our essay is
to comment on the innocent use of diffusion theory that prevails
and to recommend a model, hardly new, that may prove superior
in many situations - particularly when one probes dynamically.

In bio-photonics, coherent radiation in the near-infra-red range
(0.6-1.0 microns) is delivered by a laser onto tissue. In that range,
absorption is low and one can, by reflection or transmission, probe
an occult structure. Or, one can generate, perhaps by fluorescence,
interesting secondary radiation. After a few collisions, coherence is
lost (Ishimaru, 1978; Corngold, 2012) and the radiation intensity is
governed by a transport equation that may be quite complicated.
The material is heterogeneous on many scales! Further modeling
is needed and issues arise. All agree that two features of the scat-
tering process must be preserved in simplified models - that the
scattering is elastic and that it is strongly forward-peaked. Most
workers prefer a transport model that is a diffusion equation, one
that is characterized by three parameters K, i, g describing
absorption and scattering.

But which diffusion equation? There is no debate about the
absorption term - the issue is the quantity appearing as a
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“diffusion co-efficient.” If one makes the highly questionable
assumption that the angular flux is close to isotropic, the co-effi-
cient is, in a weak absorber, simply a mean-free path divided by
the quantity (1 - g), where g is the mean cosine of the scattering
angle. Since g is quite close to unity for most tissues, such a result
should make one uneasy and question the analysis. Yet the bio-
physics literature is rich with tables of g to be used for various tis-
sues, from brain to spleen to teeth (Jacques, 2013), and calculations
proceed happily.

Some years ago, (Aronson and Corngold, 1999) the tissue-optics
community was enlightened as to “what every reactor-theorist
knows,” that the proper generation of a diffusion (Helmholtz)
equation stems from examination of the “asymptotic regime,”
where transport is described by the dominant discrete eigenvalue
of the appropriate transport equation. One extracts from that
eigenvalue an (effective) “diffusion coefficient.” The simple
¢/(1 — g) description has limited justification, particularly when
absorption is present. Our comments were endorsed, subsequently,
by experiment (Ripoll et al., 2005) and by computation (Hoenders
and Graaff, 2005.) In this picture, careful analysis of benchmark
experiments would require detailed knowledge of the eigen-value
spectrum of the mono-energetic transport equation. Here, our
knowledge is incomplete, alas.

The discussion which follows concerns another simple model,
one that is, arguably, richer than the naive g-model. It is the
ancient, two-stream model which has an enormous literature
attached to it. (One paper (Meador and Weaver, 1980), addressed
to the atmospheric science community, sports more than 250 cita-
tions!) While the model is limited to slab geometry, and so to sim-
ple benchmark experiments and calculations, it deserves status in
the toolbox of models. It is “causal,” and can treat time-dependent
phenomena on a scale which, though short, is absent from the
time-dependent diffusion equation. It is equivalent to the transport
equation in the “rod-model” limit. The equation for the total den-
sity is a rather general Telegrapher’s equation. (For a delightful
review of that popular equation, see Weiss (2002).)

In this note we treat a collection of problems, static and time-
dependent, associated with finite media: reflection, transmission,
inclusions. We give a general formulation of transport in non-uni-
form slabs and end with a short discussion of fluctuating media.
The steady situation has been richly treated by others (Akcasu
and Williams, 2004), (Akcasu, 2008); we emphasize time-depen-
dent interrogation, which leads to wave motions and, ultimately,
to the extraction of the response-function for the material. There
is a discussion of the inhomogeneous host, in which we are able
to reduce the burden of solving a challenging Telegrapher’s equa-
tion significantly. Finally, the essay is in part pedagogical, indeed
“promotional,” in some ways a starting point. We endorse the
treatment of finite media in a two-dimensional vector space,
where the matrix formulation may be made compact and agree-
able, and urge that this simple model be given a respectable status
in the analyst’s toolbox.

2. The transport equation

We consider the transport of particles whose energy is unal-
tered by scattering. The source and the medium are such that the
particle density depends only upon a single spatial variable (“plane
geometry.”) Using conventional notation, we have
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for transport in a scattering and absorbing medium of varying
density. We write the density of the background material as

n(x') =ne(1+6(x')), then convert to dimension-less variables

through, ong(os +0)t' =t, no(0s+0)X =%, ¢'X,u, )=
vng(0s + 04)p(X', 1, t'). The result is the dimensionless equation
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where ¢ = ;%-, and the scattering operator has been denoted by P.

We convert to the 2-stream model, whereupon the flux

b
term. Then, ¢, + ¢_ = ¢, is the full flux, and ¢, — ¢_ =j the “cur-
rent” (density.) The several operators become 2 x 2 matrices,
denoted henceforth by various ¢’s One may eliminate or combine
components and go to a scalar description, which is a complicated
version of the Telegrapher's equation. We choose an algebraic
approach, with special matrices, projectors,
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whose squares vanish, 62 = 0, and whose commutators are

becomes a 2-component vector ¢ = <¢+> as does the source
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(Recall the anti-commuting Pauli matrices - whose squares are the
unit matrix,
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The product, o.07 =1 (} } > =1(1+0,) 1is a projector,
(maf)2 = ¢.0’, projecting an arbitrary vector onto the unit vector.
These matrices have the nice property that for arbitrary (vector)
flux ¢
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The scattering is P = <£1 52> withp; +p, =1, p,, p, describing
2

1
forward and backward scattering, respectively, while g =(p, — p,) is
the “averaged cosine of scattering.” Other useful quantities are

C1=Cp,Ca=0p,, a=1-cg, f=1-¢,

o+p o—Ff_
2 2

While using « is convenient, it has the drawback that its value
depends upon both absorption and anisotropy. As special cases,
note that when the scattering is isotropic, « = 1 independent of
absorption. In the absence of absorption, o = 2p,. Otherwise
o= (1-c)+2cp,.

In treating the two-stream transport equation it will be conve-
nient to “divide-by-u” that is, multiply the equation by ¢,. We then
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