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a b s t r a c t

This paper is the second part of an investigation on the use of the spectral element method (SEM) to solve
neutron transport problems in the AN approximation. Part I of the study contained a description of the SEM

variational approach of the AN equations applied to classical assembly benchmark problems. Part II deals
with the SEM solution of these equations in reactor cells. To cope with the cell geometry we apply a
mapping technique from curved to square domains based on transfinite interpolation. Benchmark exer-
cises – based on the method of characteristics – on the scale of fuel cells give a further confirmation of the
computation advantages of the SEM-AN approach in comparison with classical low-order computational
techniques.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is the second part of an investigation on the use of
the spectral element method (SEM) to solve two-dimensional neu-
tron transport problems in the variational formulation of the AN

approximation (Barbarino et al., 2013; Ciolini et al., 2002). In the
first part of the study we developed the SEM method in continuous
and discontinuous Galerkin approaches and we applied the
technique to the solution of some classical reactor benchmark
problems. The results showed that accurate solutions could be
obtained for the Natelson and the IAEA-EIR2 benchmark configura-
tions (Natelson, 1971; Khalil, 1985). Interesting features were
highlighted and the method looked quite efficient for transport
computations in full-core nuclear systems. Further evidence of
the merits of SEM, compared to the classical finite difference (FD)
and diamond difference (DD) schemes were given in a recent study
involving polynomial and non-polynomial manufactured solutions
on standard domains (Barbarino et al., 2014). Clearly, combining
high-order spectral elements for the space variable and SN methods
for the angular dependance, one is able – in these highly unrealistic
circumstances – to reduce the computation errors to round-off

level by careful selection of the polynomial degree for the space
variables, and of the angular order N.

In this companion paper the investigation is carried one step
further to assess the merits of the method when solving the AN for-
mulation of the linear transport equation with more complex
geometries involving the presence of curved boundaries, as for a
single core cell made of a fuel pin with cladding surrounded by a
moderator. A tricky aspect of the computation lies in the geometry,
the circular fuel pin and cladding being embedded in a square
domain. To avoid spoiling the accuracy of the SEM discretization,
it is utterly important to reproduce exactly the circular boundary
between the cladding and the moderator in the partitioning of
the domain. This is made possible through the use of a mapping
technique based on transfinite interpolation. In a previous work
performed by Bjontegaard et al. (2012) the Poisson equation has
been solved on deformed domains adopting different mapping
techniques and proving that the exponential error decay character-
istics of SEM can be preserved. In this work, the application of
transfinite interpolation is extended to the peculiar geometry
considered for lattice calculations in reactor physics simulations,
testing the performance of SEM against a standard FEM approach.

As the interpolation technique plays a central role in the imple-
mentation of the spectral element method on a reactor cell and to
similar domains where curved boundaries are present, Section 2 is
dedicated to its basic principle. Notice that, with regard to the
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other aspects, namely the variational approach in continuous and
discontinuous Galerkin formulation, all details – up to the con-
struction of the algebraic system and its solution using precondi-
tioned iterative methods – may be found in the companion paper
and hence will only briefly be recalled here.

Section 3 is dedicated to the discussion of several numerical tests.
Results obtained with spectral elements and AN are compared with
classical low-order methods and the method of characteristics for
benchmark purposes. Finally, Section 4 draws the conclusion.

2. Application of spectral elements to complex geometries

Application of SEM is straightforward when the integration
domain is the union of quadrangles. It becomes more complicated
– though tractable – when the geometry includes curved sub-
domains, which includes for instance the case of a nuclear fuel cell
in reactor calculations. The basic constraint lies in the fact that, in
any mapping, curved boundaries must be reproduced in the
continuous sense. Consider Fig. 1 where a 2D reference domain

X̂ :¼ ½�1;þ1�2 is transformed into the domain X through the trans-
formation C ¼ ðxðs; tÞ; yðs; tÞÞ. In practice X is imposed, depending
on the geometry of the problem. One is looking therefore in fact
for C�1, which might be almost impossible to obtain in compact
analytical form, except in some special cases. The transfinite inter-
polation technique due to Birkhoff, Gordon and Hall (1973) is a
convenient and accurate approximation technique allowing to deal
with the problem. The technique does not provide the C transfor-
mation but a Lagrangian interpolation of C with interpolation

property satisfied on the whole contour of X̂, that is a one-to-one

correspondence between the boundaries of X and X̂. The evalua-
tion of the Jacobian matrices and metrics to build the SEM mass
and stiffness matrices in the X domain becomes then straightfor-
ward (Barbarino, 2014). In the following we will describe the
methodology in two space dimensions. The reader should notice
that it is easily extended to 3D.

2.1. The 2D transfinite mapping technique

Consider the one-dimensional reference domain bO :¼ ½�1;þ1�
and let Px denote the linear Lagrangian interpolation operator onbO. This implies that f IðxÞ, linear Lagrangian interpolation of any
suitable function f ðxÞ, writes:

f IðxÞ :¼ Pxf ðxÞ ¼ f ð�1Þ#1ðxÞ þ f ð1Þ#2ðxÞ; ð1Þ

with

#1ðxÞ ¼
1� x

2
; #2ðxÞ ¼

1þ x
2

: ð2Þ

The interpolation error distribution may be represented by an
operator Qx acting on f ðxÞ such that

eðxÞ ¼ f ðxÞ � f IðxÞ ¼ ðI � PxÞf ðxÞ ¼ Q xf ðxÞ; ð3Þ

where I denotes the identity operator. As is well known, this error
decreases quadratically in terms of the interpolation mesh as this
goes to zero:

keðxÞk � Oðh2Þ: ð4Þ

Consider now the two-dimensional reference domain X̂ :¼ ½�1;þ1�2

and Px and Py the one-dimensional linear Lagrangian interpolation
operators in x and y respectively. Intuitively, the most natural
extension of the interpolation process in two space dimensions is
based on the use of the tensor product, whereby:

f tp
I ðx; yÞ :¼ PxPy f ðx; yÞ: ð5Þ

Here, the associated interpolation error distribution is

etpðx; yÞ ¼ f ðx; yÞ � f tp
I ðx; yÞ ¼ ðI � PxPyÞ f ðx; yÞ

¼ ðQ x þ Q y � Q xQ yÞ f ðx; yÞ; ð6Þ

the last relationship being obtained by substitution of Px and Py by
respectively I � Qx and I � Qy. Obviously the error reduction will be
of the same order as in the one-dimensional case since, according to
(6),

ketpðx; yÞk � Oðh2
x Þ þ Oðh2

yÞ; ð7Þ

where hx and hy denote the interpolation meshes in the x and y
variables.

The operators Pa and Qa (a ¼ x; y) are complementary since by
definition Pa þ Qa ¼ I. Hence, if one adopts the two-dimensional
interpolation scheme

f bs
I ðx; yÞ :¼ ðPx þ Py � PxPyÞ f ðx; yÞ :¼ Px � Pyf ðx; yÞ ð8Þ

rather than the tensor product, the associated interpolation error
distribution automatically writes:

ebsðx; yÞ ¼ f ðx; yÞ � f bs
I ðx; yÞ ¼ ðI � Px � PyÞ f ðx; yÞ

¼ Q xQy f ðx; yÞ: ð9Þ

The error norm in this case should be much smaller than the previ-
ous one since, due to (9):

kebsðx; yÞk � Oðh2
x h2

yÞ: ð10Þ

The two-dimensional interpolation operator Px � Py of Eq. (8) is
the Boolean sum of the one-dimensional operators Px and Py. In
expanded form, one writes:

f bs
I ðx; yÞ ¼ f ð�1; yÞ#1ðxÞ þ f ð1; yÞ#2ðxÞ þ f ðx;�1Þ#1ðyÞ

þ f ðx;1Þ#2ðyÞ � f ð�1;�1Þ#1ðxÞ#1ðyÞ
� f ð�1;1Þ#1ðxÞ#2ðyÞ � f ð1;�1Þ#2ðxÞ#1ðyÞ
� f ð1;1Þ#2ðxÞ#2ðyÞ: ð11Þ

The enhanced accuracy (10) is due to the fact that the Boolean sum
interpolation operator Px � Py reproduces the function f ðx; yÞ exactly

along the four edges of the reference domain X̂. Indeed, one can
easily verify using (8) that the following four identities hold:

f bs
I ð�1; yÞ ¼ f ð�1; yÞ and f bs

I ðx;�1Þ ¼ f ðx;�1Þ: ð12Þ

This transfinite interpolation property is precisely what is needed to
superpose a spectral element grid on a curved domain.

As mentioned before, the two-dimensional domain mapping
problem consists in finding two functions xðs; tÞ and yðs; tÞ consti-

tuting the components of the transformation Cðs; tÞ between X̂
and X. The use of the transfinite technique consists in looking for
the Boolean interpolated functions xbsðs; tÞ and ybsðs; tÞ of the trans-

formation, Cbsðs; tÞ, instead of identifying the transformation C. To
this aim, it is necessary to know the law s; tf g ! x; yf g for each ofFig. 1. Deformation of a reference element.
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