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a b s t r a c t

Gas–solid fluidization is not only an essential phenomenon in many areas of industry, but is also used to
understand particle behavior in a number of research fields. For the safety analysis of core disruptive acci-
dents in liquid-metal fast reactors, a hybrid method is developed by combining the discrete element
method with a fluid-dynamics model of the reactor safety analysis code SIMMER-III to reasonably simu-
late particle transient behavior, as well as the occurring thermal-hydraulic phenomena. As a preliminary
validation procedure, the developed hybrid method is applied to simulations of gas–solid two-phase
flows. In this study, numerical simulations of two typical gas–solid fluidized bed systems are performed.
The particles in the beds are porous alumina of 70 lm diameter and glass of 530 lm diameter, which
belong to Geldart groups A and B, respectively. The reasonable agreement between our simulation results
and experimental data from the literature demonstrates the fundamental validity of the present simula-
tion method for multiphase flows with large amounts of solid particles.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Gas–solid fluidized beds are complicated multiphase problems.
They are not only considered to be essential phenomena in many
industry areas, such as catalytic reactions and ore calcination, but
are also used to understand particle behavior and gas-phase char-
acteristics in a number of research fields.

To simulate gas–solid fluidization behavior reasonably, it is nec-
essary to consider the interaction between the gas phase and par-
ticles, as well as the interaction between particles themselves, in
an appropriate manner. Even now, it is difficult to exactly simulate
strong interactions between particles and between particles and
the solid walls of a system in multiphase flows. In macro-scale
computational methods, which are usually built on an Eulerian
framework, particles in a fluidized bed can be treated as a kind
of fluid. Therefore, in the majority of related literature, the contin-
uum assumption is applied to the particle phase. For example, the
two-fluid model (TFM) (Jackson, 1963) regards the particle–fluid

mixture as the blending of two fluids, and this can predict the
time-averaged and instantaneous porosities of the mixture well
(Yuu et al., 2000). To date, TFM has successfully described the
hydrodynamics of two characteristic groups of particles, namely
Geldart groups B and D (Mazzei and Lettieri, 2008). However, the
constitutive relations used in this model are usually based on
empirical equations, and hence lack generality under the limits
of model application. Under the Eulerian framework, the computa-
tional domain is composed of multiple mesh cells, and physical
variables in each cell are assumed to be uniform for the particle
phase. When a cell has a high volume fraction in the particle phase,
it is always difficult to represent the strong interaction between
particles, as well as the discrete particle characteristics, using the
continuum model. The other category of numerical methods treats
particles discretely at a mesoscopic level. Among them, the devel-
opment of the discrete element method (DEM), introduced by
Cundall and Strack (1979), is the most active field. With an explicit
force model, multi-body collisions can be calculated directly and
exactly. In addition, DEM provides local transient information
about particles, such as their trajectories and velocities. Various
numerical studies have applied DEM to the numerical simulation
of fluidized beds (Tsuji et al., 1993; Yuu et al., 2000).

The consideration of gas–particle interactions is another diffi-
culty in numerical simulations. In Eulerian–Eulerian approaches
such as TFM, the solution depends significantly on a proper
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description of the interfacial force and solid stress acting on
particles (Pei et al., 2012). On the other hand, it is more
straightforward to couple the DEM with a computational fluid
dynamics (CFD) method in a multi-scale modeling scheme, based
on an Eulerian–Lagrangian framework. In this coupling method,
the gas phase is modeled as a continuum, and is solved based on
the Eulerian description. With this in mind, Tsuji et al. (1993) intro-
duced a DEM–CFD coupling algorithm, and then the CFD–DEM
methods have been widely used in the simulation of multiphase
flows.

When core disruptive accidents (CDAs) occur in liquid-metal
fast reactors (LMFRs), core debris may settle on the core-support
structure and form conic bed mounds. Heat convection and
vaporization of coolant sodium will then level this debris bed. To
reasonably simulate such transient behavior, as well as thermal-
hydraulic phenomena occurring during a CDA, a comprehensive
computational tool is needed. SIMMER-III (Yamano et al., 2003)
is a successful computer code that was developed as an advanced
tool for CDA analysis in LMFRs. It is a 2D, multi-velocity-field, mul-
tiphase, multicomponent, Eulerian fluid dynamics code coupled
with a fuel-pin model and a space- and energy-dependent neutron
kinetics model. In recent decades, the SIMMER code has been suc-
cessfully applied to simulations of key thermal-hydraulic phenom-
ena involved in CDAs, as well as to assessments of reactor safety.
However, in simulations of multiphase flows with large amounts
of solid particles, the fluid-dynamics models of SIMMER-III do
not consider strong interactions among solid particles or the parti-
cle characteristics. Therefore, a hybrid computational method is
developed by combining DEM with the fluid-dynamics model of
SIMMER-III. This approach reasonably simulates the particle
behavior, as well as the thermal-hydraulic phenomena, in CDAs.
In the coupling algorithm, the governing equations of the gas phase
are solved by a semi-implicit time-factorization approach, whereas
particle movements are calculated using DEM. The two phases are
then explicitly coupled through drag force terms in their governing
equations.

As a preliminary validation procedure, the developed hybrid
method is applied to simulations of gas–solid two-phase flows. In
this study, numerical simulations of two typical gas–solid fluidiza-
tion systems consisting of Geldart group A and B particles (Geldart,
1973) are performed, and the numerical results are compared with
experimental data from the literature.

2. Mathematical treatment

2.1. Governing equations

If the heat transfer between two phases can be neglected, the
governing equations of the gas phase are the conservation equa-
tions of mass and momentum in terms of the local mean variables
over a computational cell. These can be expressed in the following
abbreviated form:
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where the subscript g denotes the gas phase, t is time, ag, qg, and m
*

g

are the void fraction, gas density, and velocity, respectively, ŝg is the
viscous stress tensor expressed by Newton’s law of viscosity, g

*
is the

gravitational acceleration, and S
*

d is the momentum exchange term
between particle and gas phases.

The particle phase is treated as discrete, and the motion of par-
ticle i is described by Newton’s law of motion as follows:
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i are the mass, position, translation
velocity, moment of inertia, angular displacement, and velocity of
particle i, respectively, F

*

c;i is the contact force between particle i
and its neighbor particle or wall, F

*

f ;i denotes the total particle–gas
interaction force for particle i, F

*

g;i is the gravitational force of parti-
cle i, and A

*

ij is the torque between particles i and j.

2.2. Fluid dynamics algorithm

The overall fluid-dynamics solution of the SIMMER-III code for
gas and particle phases is based on a time-factorization time-split-
ting approach. This is the four-step algorithm developed for the
advanced fluid-dynamics model (Bohl et al., 1990). In Step 1 of this
algorithm, intra-cell transfers are solved without considering the
convection terms. In Step 2, the end-of-time-step variables are
explicitly estimated to initialize the pressure iteration. In Step 3,
the pressure iteration is conducted to obtain consistent velocity
and pressure using a multivariate Newton–Raphson method. The
iterative calculations in this step are strictly controlled to reduce
the residuals of selected sensitive variables to zero. Finally, in Step
4, consistent mass and momentum convections are computed
based on a semi-implicit method.

2.3. Methodology of DEM

Under the assumption of DEM, particles in 2D systems are
assumed to be circular. The contact forces between the particles,
as well as between particles and the wall, are calculated by apply-
ing a viscoelastic contact model (Balevičius et al., 2008). For a par-
ticle i, the contact force F

*

c;i is divided into the normal and
tangential components.
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where the subscript j denotes the neighbor particles of particle i.
The normal component of the contact force F

*

c;ij;nor between par-
ticles i and j is described by Hooke’s contact law as follows:

F
*

c;ij;nor ¼
4
3
�

EiEj

Eið1� m2
i Þ þ Ejð1� m2

j Þ
Rijhijn

*

ij � cnormiju
*

ij;nor ð8Þ

where mij ¼
mimj

miþmj
and Rij ¼

RiRj

RjþRj
present the reduced mass and

radius, respectively, of particles i and j, E is the Young’s modulus,
m is Poisson’s ratio, hij ¼ Ri þ Rj � jr

*

ijj is the overlap length, r
*

ij is
the vector of a relative position, n

*

ij is the unit vector normal to
the contact surface with particle j directed towards particle i,
u
*

ij;nor is the normal component of the relative contact velocity
between particles i and j, and cnor is the viscous damping coefficient
in the normal direction.

The tangential force F
*

c;ij;tan is qualified by separating the static
and dynamic friction forces as:
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where t
*

ij is the unit tangential vector.
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