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a  b  s  t  r  a  c  t

We  propose  new mixed-integer  linear  programming  models  for  the  optimal  design  of water-using  and
wastewater  treatment  networks.  These  replace  the  original  non-convex,  nonlinear  problems  following
parameterization  of  the  concentration  variables  appearing  in  the  bilinear  terms  resulting  from  the  con-
taminant  mass  balances.  The  difference  between  the  models  lies  in  the  numeric  system  used  for  the
parameterization.  We  show  how  to  perform  the  transformation  for a generic  coding  and  give the  results
for  the  decimal  and binary  systems.  While  the resulting  MILPs  are  approximations  of  the  original  NLP,
any desired  accuracy  level  can be  set,  being  the  proposed  models  exact  in the  limit  of an  infinite  number
of  significant  digits.  Through  the  solution  of  several  test  cases  taken  from  the  literature,  we  show  that
the value  of the  objective  function  rapidly  approaches  the  global  optimal  solution.  The  models  can  also
be  used  to  initialize  the  NLP  when  solved  with  local  optimization  solvers.
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1. Introduction

Many nonlinear programming (NLP) problems of practical inter-
est in chemical engineering involve bilinear terms of continuous
variables resulting from the material balance equations for mul-
ticomponent streams (Quesada & Grossmann, 1995), where each
stream is associated with a flow and a set of properties. Well-known
examples include process networks (Ruiz & Grossmann, 2011),
pooling (Gounaris, Misener, & Floudas, 2009) and water network
design (Jezowski, 2010). Such bilinear programs are nonconvex,
giving rise to multiple local optima and making the application of
local NLP solvers ineffective, either due to a suboptimal solution
outcome or even failure to locate a feasible one. Since the objective
function is typically related to an economic metric, guaranteeing
global optimality is of major importance.

The most common global optimization algorithms are based
on spatial branch and bound (Wicaksono & Karimi, 2008) and
have in common the relaxation of the bilinear terms with the
McCormick (1976) linear envelope, which represents the tight-
est possible convex relaxation (Al-Khayyal & Falk, 1983). Branch
and bound methods work by approaching an upper bound (UB),
generated from the solution of the original NLP problem with
a local solver (when minimizing), to a lower bound (LB), calcu-
lated from the solution of the relaxed linear program (LP), within
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a given tolerance ε. The relaxation becomes increasingly tighter
by reducing the domain of the variable(s) selected for branch-
ing, which can be both discrete and continuous. A commercial
application of a spatial branch and bound algorithm featuring the
standard McCormick relaxations for the bilinear terms is the branch
and reduce global optimization solver BARON (Sahinidis, 1996;
Tawarmalani & Sahinidis, 2002).

One interesting aspect of mathematical programming is that a
few alternatives typically exist to formulate a problem, as can be
seen in the CMU-IBM Cyber-Infrastructure for MINLP collabora-
tive site (http://minlp.org/). In the case of bilinear programs, the
type and number of variables involved in the nonconvex terms
can have an important impact on the quality of the relaxation.
Liberti and Pantelides (2006) have proposed an algorithm that may
sometimes provide useful insights on how best to formulate a bilin-
ear program. It transforms the original problem into an equivalent
one with fewer bilinear terms, with the resulting formulation fea-
turing additional linear constraints that do not affect the feasible
region of the original NLP but tighten that of its convex relax-
ation. While limited to linear equality constraints, their algorithm
is more selective at identifying multiplications that result in valid
sets of constraints when compared to the original reformulation
linearization technique (RLT) of Sherali and Alameddine (1992).
Quesada and Grossmann (1995) also used some ideas of RLT to
establish a relation between formulations based on compositions
and individual flows for the case of process network problems.
For this class of problems, Ruiz and Grossmann (2011) have
recently exploited the interaction between the vector spaces of
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Nomenclature

Sets/indices/superscripts
C, c process contaminants
D, d wastewater streams
E, e environment
J, j possible values in any given position of the numeric

system representation
K, k positions in the numeric system representation
Kbin positions in the binary system representation
Kdec positions in the decimal system representation
T, t, t′ wastewater treatment units
U, u, u′ water-using units
Uff fixed flowrate units
Ufl fixed load units
W,  w freshwater streams

Parameters
cD
d,c

concentration of contaminant c in wastewater
stream d

c̄Ec maximum environmental discharge concentration
for contaminant c

c̄U-in
u,c maximum inlet concentration of contaminant c to

water-using unit u
c̄U-out
u,c maximum outlet concentration of contaminant c

from water-using unit u
c̄T-in
t,c maximum inlet concentration of contaminant c to

treatment unit t
cWw,c concentration of contaminant c in freshwater source

w
f D
d

inlet flowrate of wastewater stream d to WTN  sys-
tem

fE inlet flowrate to WTN  system, which is equal to final
discharge flowrate

f U-in
u inlet flowrate to fixed flowrate unit u
f U-lim
u limiting flowrate of fixed load unit u
f U-out
u outlet flowrate from fixed flowrate unit u

rrt,c removal ratio for contaminant c in treatment unit t
�mUu,c mass of contaminant c entering the system through

fixed load unit u
� left truncating point when approximating the

parameterized variables (decimal representation)
ϕ multiplication factor for WTN  system
  right truncating point when approximating the

parameterized variables (decimal representation)

Operator
˚(k, ) multiplication factor for disaggregated variables for

position k of chosen numeric representation system
and approximation setting  

Variables
CT-in
t,c inlet concentration to treatment unit t for contami-

nant c (ppm)
CT-out
t,c outlet concentration from treatment unit t for con-

taminant c (ppm)
CU-in
u,c inlet concentration to fixed-load unit u for contam-

inant c (ppm)
CU-out
u,c outlet concentration from fixed-load unit u for con-

taminant c (ppm)
FD-E
d

flowrate of wastewater stream d from WUN  sys-
tem bypassing the treatment system into the final
discharge mixer (ton/h)

FD-T
d,t

flowrate of wastewater stream d from WUN  system
into treatment unit t (ton/h)

FTt flowrate through treatment unit t (inlet = outlet)
(ton/h)

FT-E
t outlet flowrate from treatment unit t going to the

final discharge mixer (ton/h)
�
FT−E
t,c,j,k

disaggregated flowrate variable linked to FT-E
t , con-

taminant c and value j in position k (ton/h)
FT-T
t′,t outlet flowrate from treatment unit t′ going to treat-

ment unit t (ton/h)
�
FT-T
t′,t,c,j,k disaggregated flowrate variable linked to FT-T

t′,t , con-
taminant c and value j in position k (ton/h)

FUu flowrate through water-using unit u (inlet = outlet)
(ton/h)

FU−D
u outlet flowrate from water-using u going to the

WTN  system (ton/h)
�
FU-D
u,c,j,k

disaggregated flowrate variable linked to FU-D
u , con-

taminant c and value j in position k (ton/h)
FU-U
u′,u outlet flowrate from water-using unit u′ going to

water-using unit u (ton/h)
�
FU-U
u′,u,c,j,k disaggregated flowrate variable linked to FU-U

u′,u , con-
taminant c and value j in position k (ton/h)

FW-U
w,u flowrate from freshwater w into water-using unit u

(ton/h)
MT-in
t,c inlet mass flow of contaminant c to treatment unit t

(g/h)
MT-out
t,c outlet mass flow of contaminant c from treatment

unit t (g/h)
MU−in
u,c inlet mass flow of contaminant c to water-using unit

u (g/h)
MU-out
u,c outlet mass flow of contaminant c from water-using

unit u (g/h)
YU
u,c,j,k

binary variable indicating that value j in position k
is active for contaminant c in water-using unit u

YT
t,c,j,k

binary variable indicating that value j in position k
is active for contaminant c in treatment unit t

properties, flows and the unit vector, in order to generate cuts
that are not dominated by McCormick envelopes and will thus
tighten the relaxation. However, no theoretical and/or systematic
framework exists to date for deriving RLT formulations with pre-
dictably efficient performance for general non-convex programs
(Wicaksono & Karimi, 2008). These redundant constraint methods
can be viewed as a preliminary stage in spatial branch and bound
algorithms.

McCormick relaxations can be very week or loose, and may  be
very slow in lifting the lower bound in a global optimization algo-
rithm. In particular, Androulakis, Maranas, and Floudas (1995) have
showed that the maximum difference between the relaxed and real
value of a bilinear term is proportional to the area of the domain
under consideration. As a remedy, recent works have been explor-
ing the idea of piecewise mixed integer linear programming (MILP)
relaxation, still based on the convex envelope of the bilinear term,
to some success. Bergamini, Aguirre, and Grossmann (2005) pro-
posed an outer approximation deterministic algorithm for process
networks. Meyer and Floudas (2006) have shown that a piecewise
linear RLT formulation achieves considerably tighter bounds when
compared to the standard convex envelope and an improved RLT
formulation, for an industrial case study comprising a generalized
pooling problem. Karuppiah and Grossmann (2006) applied the
piecewise under- and overestimators under a spatial branch and
contract algorithm for the synthesis of an integrated water system.
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