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We study the feasibility of estimating the error in the cumulative fission source in Monte Carlo criticality
calculations by utilising the fundamental-mode eigenvector of the fission matrix. The cumulative fission
source, representing the source combined over active cycles, contains errors of both statistical and
systematic nature. Knowledge of the error in the cumulative fission source is crucial as it determines
the accuracy of computed neutron flux and power distributions.

While statistical errors are present in the eigenvector of the fission matrix, it appears that these are not
(or they are only weakly) correlated to the errors in the cumulative fission source. This ensures the
suggested methodology gives error estimates that are distributed around the real errors, which is also
supported by results of our numerical test calculations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Conventional Monte Carlo criticality calculations simulate sub-
sequent neutron generations in so-called cycles. The fission source
is expected to converge to the steady-state during a certain num-
ber of inactive cycles in which no results are being collected.
Results of interest are then combined over a number of active
cycles. While the fission source is supposed to be converged during
the active cycles, there is no diagnostics methodology that could
guarantee that with certainty, although progress has been made
in this field (Ueki and Brown, 2003). Hence, the fission source
may be sampled during the active cycles from a distribution that
is far from steady-state; moreover, the fission source may also con-
tain a bias not decaying over the cycles at all (Brissenden and
Garlick, 1986). Consequently, the fission source introduces errors
into the results sampled over the active cycles (such as the neutron
flux and power distributions). We could accept this fact if we had
the knowledge of the error in the cumulative fission source (i.e.,
the error in the fission source that was combined over the active
cycles).

The purpose of this paper is to investigate the feasibility of esti-
mating the error in the cumulative fission source. The estimate
should reflect not only the error due to the convergence problems;
it should also reflect the bias and random errors. We investigate
the possibility of achieving this goal via utilising the fundamen-
tal-mode eigenvector of the fission matrix. The fission matrix has

* Corresponding author.
E-mail address: kaurt@kth.se (K. Tuttelberg).

http://dx.doi.org/10.1016/j.anucene.2014.05.003
0306-4549/© 2014 Elsevier Ltd. All rights reserved.

been already used in a number of unrelated methods (Carter and
McCormick, 1969; Kadotani et al, 1991; Kitada and Takeda,
2001; Dufek and Gudowski, 2009; Brown et al., 2013a,b), and a
number of established Monte Carlo criticality codes offer the
fission matrix as an optional result. Naturally, the fission matrix
contains random errors that are also present in its eigenvector;
in this paper, we analyse whether these errors allow using the
eigenvector for estimating the error in the cumulative fission
source.

The paper is organised as follows. Aspects of convergence of the
Monte Carlo fission source are briefly described in Section 2. The
methodology of estimating the error in the cumulative fission
source is suggested in Section 3. Results of the numerical test
calculations are given in Section 4. Our conclusions are
summarised in Section 5.

2. Aspects of source convergence

The eigenvalue (criticality) equation for the fission source can
be written as
ks(r) = Hs(r), (1)

where k is the eigenvalue, s(r) is the concentration of fission neu-
trons at r, and

Hs(r) = / Erf — (),

where f(r' —r) d®r is an expected number of first generation fission
neutrons produced in the volume element d’r at r, resulting from a
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fission neutron born at r'. Angular dependence is not considered
since fission neutrons are emitted isotropically. The Monte Carlo
fission source is represented by a batch of m neutrons with specific
positions, energies, and statistical weights.

Eq. (1) has many eigen-pair solutions, s; and k;, but only the fun-
damental-mode solution (corresponding to the largest eigenvalue)
has a physical meaning. The respective modes are commonly
ordered according to the absolute value of their eigenvalue, from
the largest (associated with the fundamental mode j = 0) to the
smallest. To simplify the notation in the following text, we denote
the fundamental-mode fission source as z;z = sg.

To obtain the fundamental-mode solution, Monte Carlo critical-
ity codes apply the power iteration on the fission source; this
iteration can be formally described as

Sli1) % Hs® 4 €0 (2)
k
3
K0 :w 3)

where the steps i =0,1,... are commonly referred to as “cycles”,
€ (r) is the random error component resulting from sampling a
finite number of neutron histories in cycle i. The initial fission
source s must be guessed. The above iteration assumes that the
Monte Carlo fission source is always normalised to m; i.e.,

/d3rs(r) =m.
Vv

In classical Monte Carlo criticality calculations, a number of inactive
cycles must be performed just to decay the error present in s©,
while results of interest are sampled over the subsequent active
cycles.

As with any Monte Carlo simulation, the random error compo-
nent € (r) is of the order O(1//m). Moreover, we can assume that
(Gelbard and Gu, 1994)

E[¢] = 0.

The random noise in the fission source can thus be reduced by
simulating more neutron histories, at the expense of a larger com-
puting time. The random noise in the fission source € is, however,
not a relevant problem as long as the results are combined over a
sufficiently large number of active cycles n. The random noise in
the cumulative fission source

n
s =" s, (4)

i=ix+1

being of the order O(1/4/mn), can then be neglected. In Eq. (4), ix
denotes the number of inactive cycles.

Gelbard and Prael (1974) showed that the random errors prop-
agate over the cycles of Monte Carlo criticality calculations, which
results in the presence of a bias in the fission source of the order
O0(1/m). Thus, the converged Monte Carlo fission source is never
sampled from the correct fundamental mode z, but from a biased
fundamental mode that we denote as z,. This bias is indeed
reflected in the cumulative fission source. We show an example
of a biased cumulative fission source in Section 4.

Ueki et al. (2003) have shown that convergence of the Monte
Carlo fission source s to z, is governed by the dominance ratio
ki/ko at the rate of O((k; /ko)"). This is also a well known fact in
deterministic calculations (although the solution is not biased
there). This has an important consequence to systems with domi-
nance ratio close to unity; if the initial fission source contains a
large error then many cycles are necessary to decay this error.
There is a risk then that active cycles (and hence the cumulative
fission source) will be corrupted.

3. Estimating the error in the cumulative Monte Carlo fission
source

In discrete phase-space notation, the eigenvalue (criticality)
equation for the fission source can be written as

Hs = ks (5)

where H is commonly referred to as the fission matrix (Carter and

McCormick, 1969). The fission matrix H is the space-discretised

operator H; The (i, j)th element of H represents the probability that

a fission neutron born in space zone j causes a subsequent birth of a

fission neutron in space zone i,

J2, dgrfzj &’rfr — nz(r)

b, d’rz(r,E) '

H[i,j] (6)

The fundamental mode eigenvalue of H equals keg, and the corre-
sponding eigenvector h equals the discretised fundamental mode
fission source z(r).

A number of Monte Carlo codes, e.g., TRIPOLI-4 (OECD/NEA,
2008) and KENO V.a (RSICC, 2006), can optionally calculate the
fission matrix during standard Monte Carlo calculations. Dufek
and Gudowski (2009) showed that the fission matrix becomes less
sensitive to errors in the fission source as the mesh zones get
smaller. Hence, the errors in the fission source become irrelevant
for sampling the fission matrix when the zones are sufficiently
small. This means that the fission matrix and its fundamental-
mode eigenvector can be correctly evaluated during a Monte Carlo
criticality calculation even with a biased fission source. We suggest
utilising this quality of the eigenvector of the fission matrix in esti-
mating the error in the cumulative fission source.

We define the relative scalar error ¢ in the cumulative fission
source st discretised over a space mesh as

e =[50~ 2], )

where ~ denotes a normalisation operator defined for any vector x
as

X

X=X
114

and the one-norm is defined as
X = > Il
i

In Eq. (7), z is the fundamental-mode source discretised over the
same mesh as the cumulative fission source.

The fundamental-mode source z in Eq. (7) is unknown; hence,
the correct value of ¢ cannot be computed. We suggest to estimate
its value as

&=|s™ —h® (8)
where h" is the eigenvector of the fission matrix H™ that was sam-
pled over the same cycles as the cumulative fission source s'”.
Naturally, the fission matrix H™ contains random errors of the
order O(1/y/nm) that must also be present in its eigenvector h™,

We denote the random errors in h® by the vector 5™,

8" =h" -z (9)

]7

while we denote the errors in 8" by the vector y®,
y =5 7,
so that
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