# Numerical solution of the Karhunen-Loeve integral equation with examples based on various kernels derived from the Nataf procedure 

M.M.R. Williams<br>Mechanical Engineering Department, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BP, UK

## A R T I C L E I N F O

## Article history:

Received 27 May 2014
Received in revised form 30 June 2014
Accepted 14 September 2014
Available online 6 October 2014

## Keywords:

Karhunen-Loeve expansion
Nataf procedure
Integral equations


#### Abstract

An efficient solution of the Karhunen-Loeve (KL) integral equation is developed based on an expansion in Legendre polynomials and also an expansion in the eigenfunctions of the Markov exponential kernel for which analytic results are available. We solve the integral equation with the kernels arising from the Nataf procedure for eight different stochastic processes, viz: Markov, uniform, step, triangular, Rayleigh, exponential, log-normal and log-uniform. It may be shown that use of the Markov eigenfunctions leads to a significant improvement in computing speed over that from the Legendre polynomials. We also discuss some curious behavior associated with the convergence of the Markov eigenfunctions.


© 2014 Elsevier Ltd. All rights reserved.

## 1. Introduction

Recent contributions to the literature (Le Maitre and Knio, 2010; Ghanem and Spanos, 2003) have shown that the random aspects of a system may be analyzed by means of an expansion of the random parameter in terms of the eigenfunctions of a certain integral equation; the Karhunen-Loeve equation. While it is relatively simple to solve this equation analytically for the Markov exponential kernel, it is not so easy for other types of kernel which are directly related to the correlation function of the random process. This is especially so when non-Gaussian processes are involved (Park et al., 2015). There is therefore some merit in investigating efficient ways to solve this integral equation numerically and to compare the resulting eigenfunctions and eigenvalues for different correlation functions.

To illustrate the procedure, we remind the reader that in a spatially random medium one way to represent the randomness is to write the desired random parameter in the form:
$f(\mathbf{x}, \boldsymbol{\xi})=\bar{f}(\mathbf{x})+\sum_{n=1}^{N} \sqrt{\lambda_{n}} g_{n}(\mathbf{x}) \xi_{n}$
where $N$ is chosen to give a desired accuracy. $\xi_{n}$ are Gaussian random variables with zero mean and unit variance. The functions $g_{n}(\mathbf{x})$ are the eigenfunctions of the integral equation below and $\lambda_{n}$ are the associated eigenvalues.

[^0]$\int_{D} d \mathbf{x}^{\prime} K\left(\mathbf{x}, \mathbf{x}^{\prime}\right) g_{n}\left(\mathbf{x}^{\prime}\right)=\lambda_{n} g_{n}(\mathbf{x})$
The kernel $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is the covariance function of $f(\mathbf{x}, \xi)$ defined by,
\[

$$
\begin{align*}
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\left\langle f(\mathbf{x}, \boldsymbol{\xi})-\bar{f}(\mathbf{x}) f\left(\mathbf{x}^{\prime}, \boldsymbol{\xi}\right)-\bar{f}\left(\mathbf{x}^{\prime}\right)\right\rangle \\
& =\sum_{n=1}^{N} \lambda_{n} g_{n}(\mathbf{x}) g_{n}\left(\mathbf{x}^{\prime}\right) \tag{3}
\end{align*}
$$
\]

where in arriving at Eq. (3), we have used the fact that the eigenfunctions $g_{n}(\mathbf{x})$ obey the orthonormality condition
$\int_{D} d \mathbf{x} g_{n}(\mathbf{x}) g_{m}(\mathbf{x})=\delta_{n m}$
A practical example of the above procedure would be in the description of a multiplying medium in which the fissile and/or absorbing material is randomly dispersed in a moderator such as in the pebble bed reactor. In such a case, the random variable $f(\mathbf{x}, \boldsymbol{\xi})$ would be the number density $N(\mathbf{x}, \boldsymbol{\xi})$ which arises in the macroscopic cross section.

In this note we wish to describe a method for solving Eq. (2). For illustrative purposes we assume one-dimension but the method can also be extended to higher dimensional problems. Thus we consider a uniform slab of thickness $a$ for which Eq. (2) becomes,
$\int_{0}^{a} d x^{\prime} K\left(x, x^{\prime}\right) g_{n}\left(x^{\prime}\right)=\lambda_{n} g_{n}(x)$
The choice of $K\left(x, x^{\prime}\right)$ will be made later. Neutrons will diffuse through this slab but their subsequent behavior is not the concern
of the present work which is to show how the macroscopic cross sections are affected by spatial randomness and how they may be represented mathematically in the transport equation.

## 2. Theory of the method

We solve Eq. (5) by writing the solution in the form (Corngold, 1957):
$g_{n}(x)=\sum_{k=0}^{N} g_{n, k} P_{k}\left(\frac{2 x-a}{a}\right)$
where $P_{n}(w)$ are the Legendre polynomials and we also note the orthogonality condition

$$
\begin{align*}
\int_{0}^{a} d x P_{n}\left(\frac{2 x-a}{a}\right) P_{m}\left(\frac{2 x-a}{a}\right) & =\frac{a}{2} \int_{-1}^{1} d t P_{n}(t) P_{m}(t) \\
& =\frac{a}{2 n+1} \delta_{n m} \tag{7}
\end{align*}
$$

For practical reasons the sum in Eq. (6) is truncated at $k=N$. Inserting Eq. (6) into the integral Eq. (5), we find after multiplying by $P_{\ell}\left(\frac{2 x-a}{a}\right)$ and integrating over $x(0, a)$, the following set of homogeneous algebraic equations for the expansion coefficients $g_{n, k}$,
$\frac{a}{2 \ell+1} \lambda_{n} g_{n, \ell}=\sum_{k=0}^{N} g_{n, k} \int_{0}^{a} d x P_{\ell}\left(\frac{2 x-a}{a}\right) \int_{0}^{a} d x^{\prime} P_{k}\left(\frac{2 x^{\prime}-a}{a}\right) K\left(x, x^{\prime}\right)$

For simplicity, and because it is usually the case, we assume that the kernel is of the displacement type, i.e. $K\left(x, x^{\prime}\right)=K\left(\left|x-x^{\prime}\right|\right)$ $=\sigma_{G}^{2} \rho_{G}\left(\left|x-x^{\prime}\right|\right)$, where $\sigma_{G}^{2}$ is the variance and $\rho_{G}(|x|)$ is the correlation function. That being so, we may symmetrise Eq. (8) to the form

$$
\begin{align*}
\lambda_{n} \frac{g_{n, \ell}}{\sqrt{2 \ell+1}}= & \frac{a}{4} \sum_{k=0}^{N} \frac{g_{n, k}}{\sqrt{2 k+1}} \sqrt{(2 \ell+1)(2 k+1)} \int_{-1}^{1} d t P_{\ell}(t) \\
& \times \int_{-1}^{1} d t^{\prime} P_{k}\left(t^{\prime}\right) K\left(\frac{a}{2}\left|t-t^{\prime}\right|\right) \tag{9}
\end{align*}
$$

Defining
$\tilde{y}_{\ell}=\frac{g_{n, \ell-1}}{\sqrt{2 \ell-1}}$
and
$\widetilde{\Delta}_{\ell, k}=\widetilde{\Delta}_{k, \ell}=\sqrt{(2 \ell-1)(2 k-1)} \int_{-1}^{1} d t P_{\ell-1}(t) \int_{-1}^{1} d t^{\prime} P_{k-1}\left(t^{\prime}\right) K\left(\frac{a}{2}\left|t-t^{\prime}\right|\right)$

Eq. (9) is written:
$\tilde{\lambda}_{\ell}=\sum_{k=1}^{N} \tilde{y}_{k} \tilde{\Delta}_{\ell, k}, \quad(\ell=1,2, \ldots, N)$
with $\tilde{\lambda}=4 \lambda / a$. We have suppressed the subscript $n$ but this will reappear when we reconstruct the eigenfunctions from Eq. (6). Eq. (12) constitute an eigenvalue problem which may be solved using a Fortran subroutine from the IMSL library. In order to normalise the eigenfunctions we return to Eq. (6) and write
$A^{2} \int_{0}^{a} d x\left[\sum_{k=0}^{N} g_{n, k} P_{k}\left(\frac{2 x-a}{a}\right)\right]^{2}=1$
or
$A^{2} \sum_{k=0}^{N} \sum_{k^{\prime}=0}^{N} g_{n, k} g_{n, k^{\prime}} \int_{0}^{a} d x P_{k}\left(\frac{2 x-a}{a}\right) P_{k^{\prime}}\left(\frac{2 x-a}{a}\right)=1$
Using the orthogonality of the Legendre polynomials, we find:
$A^{2} a \sum_{k=0}^{N} \frac{g_{n, k}^{2}}{2 k+1}=A^{2} a \sum_{k=1}^{N} \tilde{y}_{k}^{2}=1$
from which we find the normalisation factor $A$. The normalised eigenfunction is therefore,
$g_{n}(x)=\frac{1}{A_{n}} \sum_{k=0}^{N} g_{n, k} P_{k}\left(\frac{2 x-a}{a}\right)$
Clearly, both eigenvalues and eigenfunctions depend crucially on the value of $N$.

## 3. Numerical examples

To illustrate the above method we consider eight forms of kernel each of which appears in problems relating to reliability estimates and/or data uncertainty. It is not appropriate to go into the specific details of these kernels but a full account may be found in (Park et al., 2015).

- Type 1. Markov

$$
\begin{equation*}
K(|x|)=\sigma_{G}^{2} \rho_{G}(x)=\sigma_{G}^{2} e^{-\mu|x|} \tag{15}
\end{equation*}
$$

- Type 2. Nataf uniform

$$
\begin{equation*}
K(|x|)=\sigma_{G}^{2} \rho_{G}(x)=2 \sigma_{G}^{2} \sin \left(\frac{\pi}{6} e^{-\mu|x|}\right) \tag{16}
\end{equation*}
$$

- Type 3. Nataf step (dichotomic)

$$
\begin{equation*}
K(|x|)=\sigma_{G}^{2} \rho_{G}(x)=\sigma_{G}^{2} \sin \left(\frac{\pi}{2} e^{-\mu|x|}\right) \tag{17}
\end{equation*}
$$

- Type 4. Nataf triangular (see Appendix)
- Type 5. Nataf Rayleigh (see Appendix)
- Type 6. Nataf exponential (see Appendix)
- Type 7. Nataf log-normal $\rho_{y}(x)\left(e^{\hat{\sigma}^{2}}-1\right)=\left(e^{\hat{\sigma}^{2} \rho_{G}(x)}-1\right)$
- Type 8. Nataf log-uniform (see Appendix)

The covariance functions of types 2-8 are derived from the following Nataf equation (Nataf, 1962; Llango et al., 2013),

$$
\begin{equation*}
\sigma_{y}^{2} \rho_{y}(x)=\sum_{n=1}^{M} K_{n}^{2}(X) \rho_{G}^{n}(x) \tag{18}
\end{equation*}
$$

where $\sigma_{y}^{2}$ and $\rho_{y}(x)$ are prescribed by the problem at hand, $K_{n}(X)$ is obtained by the Nataf procedure for stochastic process $X$ (i.e. one of types $2-8$ ) and $\rho_{G}(x)$ is the root of Eq. (18) which lies in the range $(-1,1)$. In some cases, the summation in Eq. (18) may be performed analytically, e.g. in the above types 2,3 and 7 ; in the other cases a root-finding procedure is necessary. The values of $K_{n}^{2}$ for types 4,5 , 6 and 8 are given in the Appendix.

While the use of types $2-8$ in the integral equation does not admit of an analytical solution, for type 1 we may convert the integral equation to a second order differential equation from which the eigenvalues and eigenfunctions can be obtained analytically. This enables the accuracy of the approximate method described above to be assessed. The results obtained by solving the KL equation analytically with the Markov kernel are (Williams, 2006),
$\tilde{g}_{n}(x)=\frac{\mu \sin \left(w_{n} x\right)+w_{n} \cos \left(w_{n} x\right)}{\sqrt{\mu+a\left(\mu^{2}+w_{n}^{2}\right) / 2}}, \quad \int_{0}^{a} d x \tilde{g}_{n}(x) \tilde{g}_{m}(x)=\delta_{n m}$
where $w_{n}$ are the roots of
$\tan (w a)=\frac{2 \mu w}{w^{2}-\mu^{2}}$
and the eigenvalues are
$\lambda_{n}=\frac{2 \mu \sigma^{2}}{w_{n}^{2}+\mu^{2}}$
$\sigma^{2}$ being the variance of the process described by $K\left(x, x^{\prime}\right)$.

# https://daneshyari.com/en/article/1728168 

Download Persian Version:

## https://daneshyari.com/article/1728168

## Daneshyari.com


[^0]:    E-mail address: mmrw@btinternet.com

