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a b s t r a c t

An efficient solution of the Karhunen–Loeve (KL) integral equation is developed based on an expansion in
Legendre polynomials and also an expansion in the eigenfunctions of the Markov exponential kernel for
which analytic results are available. We solve the integral equation with the kernels arising from the
Nataf procedure for eight different stochastic processes, viz: Markov, uniform, step, triangular, Rayleigh,
exponential, log-normal and log-uniform. It may be shown that use of the Markov eigenfunctions leads to
a significant improvement in computing speed over that from the Legendre polynomials. We also discuss
some curious behavior associated with the convergence of the Markov eigenfunctions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recent contributions to the literature (Le Maitre and Knio,
2010; Ghanem and Spanos, 2003) have shown that the random
aspects of a system may be analyzed by means of an expansion
of the random parameter in terms of the eigenfunctions of a certain
integral equation; the Karhunen–Loeve equation. While it is rela-
tively simple to solve this equation analytically for the Markov
exponential kernel, it is not so easy for other types of kernel which
are directly related to the correlation function of the random pro-
cess. This is especially so when non-Gaussian processes are
involved (Park et al., 2015). There is therefore some merit in inves-
tigating efficient ways to solve this integral equation numerically
and to compare the resulting eigenfunctions and eigenvalues for
different correlation functions.

To illustrate the procedure, we remind the reader that in a spa-
tially random medium one way to represent the randomness is to
write the desired random parameter in the form:

f ðx; nÞ ¼ �f ðxÞ þ
XN

n¼1

ffiffiffiffiffi
kn

p
gnðxÞnn ð1Þ

where N is chosen to give a desired accuracy. nn are Gaussian ran-
dom variables with zero mean and unit variance. The functions
gn(x) are the eigenfunctions of the integral equation below and kn

are the associated eigenvalues.

Z
D

dx0Kðx; x0Þgnðx0Þ ¼ kngnðxÞ ð2Þ

The kernel K(x, x0) is the covariance function of f(x, n) defined by,

Kðx;x0Þ ¼ f ðx; nÞ � �f ðxÞf ðx0; nÞ � �f ðx0Þ
� �

¼
XN

n¼1

kngnðxÞgnðx0Þ
ð3Þ

where in arriving at Eq. (3), we have used the fact that the eigen-
functions gn(x) obey the orthonormality conditionZ

D
dxgnðxÞgmðxÞ ¼ dnm ð4Þ

A practical example of the above procedure would be in the descrip-
tion of a multiplying medium in which the fissile and/or absorbing
material is randomly dispersed in a moderator such as in the pebble
bed reactor. In such a case, the random variable f(x, n) would be the
number density N(x, n) which arises in the macroscopic cross
section.

In this note we wish to describe a method for solving Eq. (2).
For illustrative purposes we assume one-dimension but the
method can also be extended to higher dimensional problems.
Thus we consider a uniform slab of thickness a for which Eq. (2)
becomes,Z a

0
dx0Kðx; x0Þgnðx0Þ ¼ kngnðxÞ ð5Þ

The choice of K(x, x0) will be made later. Neutrons will diffuse
through this slab but their subsequent behavior is not the concern

http://dx.doi.org/10.1016/j.anucene.2014.09.022
0306-4549/� 2014 Elsevier Ltd. All rights reserved.

E-mail address: mmrw@btinternet.com

Annals of Nuclear Energy 76 (2015) 19–26

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2014.09.022&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2014.09.022
mailto:mmrw@btinternet.com
http://dx.doi.org/10.1016/j.anucene.2014.09.022
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


of the present work which is to show how the macroscopic cross
sections are affected by spatial randomness and how they may be
represented mathematically in the transport equation.

2. Theory of the method

We solve Eq. (5) by writing the solution in the form (Corngold,
1957):

gnðxÞ ¼
XN

k¼0

gn;kPk
2x� a

a

� �
ð6Þ

where Pn(w) are the Legendre polynomials and we also note the
orthogonality conditionZ a

0
dxPn

2x� a
a

� �
Pm

2x� a
a

� �
¼ a

2

Z 1

�1
dtPnðtÞPmðtÞ

¼ a
2nþ 1

dnm ð7Þ

For practical reasons the sum in Eq. (6) is truncated at k = N. Insert-
ing Eq. (6) into the integral Eq. (5), we find after multiplying by
P‘ 2x�a

a

� �
and integrating over x(0, a), the following set of homoge-

neous algebraic equations for the expansion coefficients gn,k,

a
2‘þ 1

kngn;‘ ¼
XN

k¼0

gn;k

Z a

0
dxP‘

2x� a
a

� �Z a

0
dx0Pk

2x0 � a
a

� �
K x; x0ð Þ

ð8Þ

For simplicity, and because it is usually the case, we assume that the
kernel is of the displacement type, i.e. Kðx; x0Þ ¼ Kðjx� x0jÞ
¼ r2

GqGðjx� x0jÞ, where r2
G is the variance and qG(|x|) is the correla-

tion function. That being so, we may symmetrise Eq. (8) to the form

kn
gn;‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2‘þ 1
p ¼ a

4

XN

k¼0

gn;kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð2kþ 1Þ

q Z 1

�1
dtP‘ðtÞ

�
Z 1

�1
dt0Pkðt0ÞK

a
2
jt � t0j

	 

ð9Þ

Defining

~y‘ ¼
gn;‘�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘� 1
p ð10Þ

and

eD‘;k¼ eDk;‘¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘�1Þð2k�1Þ

q Z 1

�1
dtP‘�1ðtÞ

Z 1

�1
dt0Pk�1ðt0ÞK

a
2
jt� t0j

	 

ð11Þ

Eq. (9) is written:

~k~y‘ ¼
XN

k¼1

~yk
~D‘;k; ð‘ ¼ 1;2; . . . ;NÞ ð12Þ

with ~k ¼ 4k=a. We have suppressed the subscript n but this will
reappear when we reconstruct the eigenfunctions from Eq. (6). Eq.
(12) constitute an eigenvalue problem which may be solved using
a Fortran subroutine from the IMSL library. In order to normalise
the eigenfunctions we return to Eq. (6) and write

A2
Z a

0
dx

XN

k¼0

gn;kPk
2x� a

a

� �" #2

¼ 1

or

A2
XN

k¼0

XN

k0¼0

gn;kgn;k0

Z a

0
dxPk

2x� a
a

� �
Pk0

2x� a
a

� �
¼ 1

ð13Þ

Using the orthogonality of the Legendre polynomials, we find:

A2a
XN

k¼0

g2
n;k

2kþ 1
¼ A2a

XN

k¼1

~y2
k ¼ 1

from which we find the normalisation factor A. The normalised
eigenfunction is therefore,

gnðxÞ ¼
1
An

XN

k¼0

gn;kPk
2x� a

a

� �
ð14Þ

Clearly, both eigenvalues and eigenfunctions depend crucially on
the value of N.

3. Numerical examples

To illustrate the above method we consider eight forms of kernel
each of which appears in problems relating to reliability estimates
and/or data uncertainty. It is not appropriate to go into the specific
details of these kernels but a full account may be found in (Park
et al., 2015).

� Type 1. Markov

KðjxjÞ ¼ r2
GqGðxÞ ¼ r2

Ge�ljxj ð15Þ

� Type 2. Nataf uniform

KðjxjÞ ¼ r2
GqGðxÞ ¼ 2r2

G sin
p
6

e�ljxj
	 


ð16Þ

� Type 3. Nataf step (dichotomic)

KðjxjÞ ¼ r2
GqGðxÞ ¼ r2

G sin
p
2

e�ljxj
	 


ð17Þ

� Type 4. Nataf triangular (see Appendix)
� Type 5. Nataf Rayleigh (see Appendix)
� Type 6. Nataf exponential (see Appendix)

� Type 7. Nataf log-normal qyðxÞðer̂2 � 1Þ ¼ er̂2qGðxÞ � 1
	 


� Type 8. Nataf log-uniform (see Appendix)

The covariance functions of types 2–8 are derived from the fol-
lowing Nataf equation (Nataf, 1962; Llango et al., 2013),

r2
yqyðxÞ ¼

XM

n¼1

K2
nðXÞqn

GðxÞ ð18Þ

where r2
y and qyðxÞ are prescribed by the problem at hand, Kn(X) is

obtained by the Nataf procedure for stochastic process X (i.e. one of
types 2–8) and qG(x) is the root of Eq. (18) which lies in the range
(�1, 1). In some cases, the summation in Eq. (18) may be performed
analytically, e.g. in the above types 2, 3 and 7; in the other cases a
root-finding procedure is necessary. The values of K2

n for types 4, 5,
6 and 8 are given in the Appendix.

While the use of types 2–8 in the integral equation does not
admit of an analytical solution, for type 1 we may convert the inte-
gral equation to a second order differential equation from which
the eigenvalues and eigenfunctions can be obtained analytically.
This enables the accuracy of the approximate method described
above to be assessed. The results obtained by solving the KL equa-
tion analytically with the Markov kernel are (Williams, 2006),

~gnðxÞ ¼
l sinðwnxÞ þwn cosðwnxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lþ aðl2 þw2
nÞ=2

p ;

Z a

0
dx~gnðxÞ~gmðxÞ ¼ dnm ð19Þ

where wn are the roots of

tanðwaÞ ¼ 2lw
w2 � l2 ð20Þ

and the eigenvalues are

kn ¼
2lr2

w2
n þ l2 ð21Þ

r2 being the variance of the process described by K(x, x0).
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