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a b s t r a c t

Fine-group whole-core reactor analysis remains one of the long sought goals of the reactor physics com-
munity. Such a detailed analysis is typically too computationally expensive to be realized on anything
except the largest of supercomputers. Recondensation using the Discrete Generalized Multigroup
(DGM) method, though, offers a relatively cheap alternative to solving the fine group transport problem.
DGM, however, suffered from inconsistencies when applied to high-order spatial methods. While an
exact spatial recondensation method was developed and provided full spatial consistency with the fine
group problem, this approach substantially increased memory requirements for realistic problems. The
method described in this paper, called the Source Equivalence Acceleration Method (SEAM), forms a
coarse-group problem which preserves the fine-group problem even when using higher order spatial
methods. SEAM allows recondensation to converge to the fine-group solution with minimal memory
requirements and little additional overhead. This method also provides for consistency when using dif-
ferent spatial methods and angular quadratures between the coarse group and fine group problems.
SEAM was implemented in OpenMOC, a 2D MOC code developed at MIT, and its performance tested
against Coarse Mesh Finite Difference (CMFD) acceleration on the C5G7 benchmark problem and on a
361 group version of the problem. For extremely expensive transport calculations, SEAM was able to
outperform CMFD, resulting in speed-ups of 20–45 relative to the normal power iteration calculation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Achieving high fidelity neutronics analysis is of utmost impor-
tance in analyzing the performance and safety of reactor designs.
Since quantities such as power density are dependent on the
neutron distribution, accurate predictions of the neutron flux in a
reactor are key to performing steady-state and transient safety
analyses. These analyses are conducted by solving the neutron
transport equation.

Ideally, this equation would be solved exactly for a given 3D
reactor model including a detailed representation of all reactor
internals and their corresponding cross section data. Such solu-
tions are very expensive computationally especially when one tries
to reduce the approximations introduced in the energy condensa-
tion process which can require up to 1000’s of energy groups. It is
thus imperative to make proper use of low-order acceleration
models to reduce the computational cost and provide a platform
for fluids and fuel performance coupling. The current state-
of-the-art in acceleration usually involves some form of non-linear

acceleration (Kim and DeHart, 2011; Park and Cho, 2004; Smith,
1983; Yamamoto, 2005; Zhong and et al., 2008) which focuses on
spatial acceleration for high dominance ratio cores or the general-
ized multigroup method with recondensation, a non-linear
approach that aims at high dimension energy problems
(Douglass and Rahnema, 2012; Rahnema et al., 2008; Zhu and
Forget, 2010, 2011). One of the main problems with generalized
multigroup and recondensation is that the nonlinear iteration is
not consistent with the fine group problem when using high order
spatial methods, meaning the nonlinear iteration does not con-
verge to the fine group solution (Everson and Forget, 2013;
Everson, 2014). Previous work modifying the generalized multi-
group equations produced full consistency with the fine group
problem but came with a substantial increase in memory require-
ments. To overcome this limitation, this paper proposes a new
nonlinear acceleration method as the primary means of producing
high fidelity solutions in an efficient manner for high energy and
angular dimensionality problems.

2. Review of nonlinear acceleration

Nonlinear acceleration methods rely on an iterative approach in
which full transport sweeps are used to create an equivalent yet
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cheaper version of the problem. These cheaper versions can be
formed using spatial homogenization, energy condensation and/
or a low order angular approximation. The solutions from these
equivalent problems are then used to reduce the total number of
full transport sweeps required to converge the fission source. This
provides a relatively cheap process by which the true solution of
the full problem can be obtained.

2.1. Coarse Mesh Finite Difference diffusion and Coarse Mesh
Rebalance

Coarse Mesh Finite Difference (CMFD) diffusion is a widely used
nonlinear acceleration scheme in reactor physics (Kim and DeHart,
2011; Smith, 1983; Zhong and et al., 2008). In this approach, the
high order angular problem is represented by a low-order diffusion
problem. Equivalence is enforced through calculation of nonlinear
diffusion coefficient correction factors (diffusion correction factors
for short). Equivalence can be maintained across spatial homogeni-
zation and energy condensation. The diffusion correction factors
are calculated according to Eq. (2.1) when incorporating energy
condensation simultaneously with spatial homogenization.

eDcþ1=2;g ¼ �
Jcþ1=2;g þ bDcþ1=2;g /cþ1;g � /c;g

� �
/cþ1;g þ /c;g

ð2:1Þ

Definitions for each quantity are provided below:

� /c;g is the scalar flux for coarse mesh cell c and coarse group g.
� bDcþ1=2;g is the effective diffusion coefficient between coarse

mesh cells c and c + 1 for coarse group g.
� Jcþ1=2;g is the net surface current across the surface spanning

coarse mesh cells c and c + 1 for coarse group g.

The procedure highlighted in Eq. (2.1) takes into account energy
condensation to create a cheaper version of a fine group transport
calculation through the simultaneous spatial homogenization and
multigroup collapse of scattering, fission, total cross sections, diffu-
sion coefficients and scalar fluxes (Lee, 2012). An example of this
procedure is provided for the fission cross section in Eq. (2.2).

mRF;c;g ¼
X
K2g

X
f2c

mRF;f ;K/f ;K df

X
K2g

X
f2c

/f ;K df

,
ð2:2Þ

The summations take place across the individual fine groups
within a coarse group g and are indexed using K. f is used to denote
each of the fine mesh cells homogenized into coarse mesh cell c. df

is the length of fine mesh cell f in a 1D problem.
Once the diffusion correction factors are calculated for each sur-

face, a set of finite-difference diffusion equations are solved to pro-
vide the new fluxes for each of the coarse meshes. The converged
coarse mesh fluxes are then used to update the fine mesh fine
group fluxes, thereby accelerating the transport problem.

An alternative to CMFD is the Coarse Mesh Rebalance (CMR)
method (Park and Cho, 2004; Yamamoto, 2005). In this case, neu-
tron conservation is maintained directly through the neutron bal-
ance equation by multiplying the surface currents at coarse mesh
cell boundaries by a set of rebalance factors (Hong et al., 2010).

Application to a 1D problem is shown in Eq. (2.3) with energy
condensation included.

Jþc;g þ J�c;g þ
X
f2c

df RT;f ;g/f ;g

 !
Rc;g � Jþc�1;gRc�1;g � J�cþ1;gRcþ1;g

¼
X
f2c

df Q c;g ð2:3Þ

Definitions for each quantity are provided below:

� Jþ=�c;g is partial surface current for coarse group g exiting coarse
mesh cell c from the right and left surfaces, respectively.
� Rc,g is the rebalance factor for coarse mesh cell c and coarse

group g.
� Qc,g is the source for coarse mesh cell c and coarse group g.

Eq. (2.3) forms a series of equations from which the rebalance
factors can be solved. The rebalance factors are then used to update
the fine mesh fine group cell-averaged scalar fluxes and accelerate
the transport problem.

However, it is important to note that both CMFD and CMR suffer
from conditional stability issues. Both methods suffer from insta-
bilities for optically thick meshes, but only CMFD appears to be sta-
ble for optically thin coarse meshes (Kim and DeHart, 2011). If
CMFD is able to converge for an optically thick problem, little to
no acceleration is observed (Lee, 2012). In many applications of
CMFD, a dampening factor is applied to prevent instabilities from
growing and causing divergence. The dampening factor prevents
overshoot of the accelerated scalar fluxes by limiting how quickly
the nonlinear diffusion coefficient correction factor from Eq. (2.1)
is updated. This damping factor is largely problem dependent but
a reasonable value can be applied across a number of different
problems (Boyd et al., 2014). Partial current Coarse Mesh Finite
Difference (pCMFD) is a more recent development which has also
been shown to improve stability. This approach adds a second
degree of freedom to CMFD by calculating two partial current cor-
rective factors at the boundaries of a coarse mesh instead of form-
ing a single net current corrective factor (Kim and DeHart, 2011;
Hong et al., 2010).

While multigroup collapse can be and has been incorporated
into CMFD and CMR, the primary focus of acceleration for both
methods is typically placed on the space-angle problem.

2.2. Exact recondensation

DGM differs from these methods in that its primary focus is on
accelerating the spectral problem. This approach is essentially a
discrete form of the Generalized Energy Condensation (GEC)
method, which was the first method to apply a transformation to
the original fine group equations using a series of continuous poly-
nomial functions in energy (Rahnema et al., 2008). On the other
hand, DGM uses discrete basis functions to represent the fine
group angular flux as angular flux moments according to Eq.

(2.4) (Zhu and Forget, 2010). In this equation, wK r
*
;X
*

� �
is the

angular flux for fine group K in coarse group g, Pi;K is the ith discrete

basis function evaluated at fine group K and wi;g r
*
;X
*

� �
is the ith

angular flux moment in coarse group g.

wi;g r
*
;X
*

� �
¼
X
K2g

Pi;KwK r
*
;X
*

� �
ð2:4Þ

The use of discrete basis functions to represent the fine group
fluxes better matches the discrete nature of the cross section data.
The fine group angular flux can be expanded in terms of these
angular flux moments within the multigroup transport equation
using Eq. (2.5). ai is the normalization constant for the ith discrete
basis function and Ng is the total number of fine groups in coarse
group g, which is equivalent to the total number of moments in
coarse group g.

wK r
*
;X
*

� �
¼
XNg�1

i¼0

aiPi;Kwi;g r
*
;X
*

� �
ð2:5Þ
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