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a b s t r a c t

The exponential time differencing (ETD) method with Taylor’s series approximation is developed to solve
the reactor point kinetics equations using large time-step. It is a semi-analytical and self-starting method
in which the point kinetics equations are integrated using an integrating factor. The power and precursor
concentrations occurring in the equations are expanded as a polynomial in derivatives. The coefficients of
the polynomial are obtained from the recurrence relation. This method is applied to estimate the power
transients of both thermal and fast reactors with multi group of delayed neutrons and the results are
compared with other standard methods. From the results it is found that the modified exponential time
differencing method estimates the power transients accurately for thermal and fast reactors and the
numerical solution is found to converge fast. The error analysis of this method is discussed and a criterion
for choosing the time-step for step and slowly varying reactivity insertions is also presented.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The power transients taking place in nuclear reactors depend on
the kind of reactivity perturbation acting on the reactor and also
the power level in which the reactor is operating. It is important
to predict the power transients, caused by reactivity perturbations,
during normal operation and accidental conditions. Though the
space time kinetics represents the time-dependent behaviour of
nuclear reactor in a more realistic way, solving the space time
kinetics equations consumes more time. Determination of spatial
variation of flux in a reactor is more difficult than the determina-
tion of power. So, generally in medium sized thermal reactors
and tightly coupled fast reactors, the point kinetics is found to be
satisfactory in predicting the power transients. The point kinetics
equations with multi group of delayed neutrons are stiff non-
linear differential equations. A major difficulty in numerically solv-
ing the point kinetics equations arises from the stiffness term,
which necessitates the requirement of choosing very small time-
step. There are different kinds of methodologies available in the lit-
erature to study the reactor transients. Hennart and Barrios (1976)
applied the Pade and Chebyshev type approximation to solve the
point kinetics equations. One can use the third order Hermite
Polynomial Method (HPM) (Yeh, 1978) to solve the point kinetics

equations. Aboanber and Nahla (2002a,b) presented the analytical
inversion method for solving the point reactor kinetics equations
with multi group of delayed neutrons. Li et al. (2009) introduced
a numerical integral method using the better basis function (BBF)
and investigated the power transients caused by various types of
reactivity insertion for thermal reactors with multi group of
delayed neutrons. Recently Nahla (2011) applied the Taylor’s series
method (TSM) to solve the point kinetics equations.

In this work, the exponential time differencing (ETD) method
with Taylor’s series expansion is developed and presented for
solving the point kinetics equations with multi group of delayed
neutrons. The exponential time differencing (ETD) method was
originally proposed in the field of computational electrodynamics
(Taflove, 1995) to solve stiff differential equations.

This method is developed by integrating the point kinetics
equations over a single time-step using an integrating factor.
The power and precursor concentrations in the equations are
expanded as a polynomial in derivatives and then integrated.
The coefficients of the polynomial (ETD coefficients) are obtained
from integration of simple function and a recurrence relation
between them is also obtained. The recurrence relation is used
to determine higher order ETD coefficients. This method is applied
to estimate the power transients of thermal reactors and the
results are compared with other standard methods referred by
Nahla (2011) and Li et al. (2009). This method is also applied to
estimate the power transients of the Indian Prototype Fast
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Breeder Reactor (PFBR) at IGCAR Kalpakkam and the results are
compared with the Cohen’s method (1958). From the comparison
of results, it is learnt that the modified ETD method estimates the
power transients accurately using large time-step for thermal and
fast reactors with multi group of delayed neutrons. The results
also show that the power transients may be estimated for longer
duration of time. The error analysis of this method is discussed
and the numerical solution is found to converge fast as the order
of the ETD coefficients is increased. From the error analysis, a
novel way of choosing the time-step, ‘h’ and its upper bound for
convergence of the numerical solution are also derived and
presented.

2. The modified exponential time differencing (ETD) method
and the point kinetics equations

The exponential time differencing (ETD) methods are time inte-
gration techniques that provide accurate smooth solutions for stiff
differential equations.

Consider the following stiff differential equation

du
dt
¼ cuþ Fðu; tÞ ð1Þ

In the above equation ‘c’ is the stiffness constant which may be
large and F(u,t) may be a nonlinear term. To numerically solve this
kind of stiff differential equation, one should be able to handle the
stiffness constant ‘c’, by properly choosing the time-step ‘h’. To solve
Eq. (1) using the exponential time differencing method, it is multi-
plied by an integrating factor e�ct and integrated over a single time-
step, from t = tn to t = tn+1 = tn + h, to get

Z tnþ1

tn

d
dt
ðue�ctÞdt ¼

Z tnþ1

tn

Fðu; tÞe�ctdt ð2Þ

After integrating, we get

uðtnþ1Þ ¼ uðtnÞech þ ech
Z h

0
e�csFðuðtn þ sÞ; tn þ sÞds ð3Þ

where s = t � tn. The purpose of transforming the differential Eq. (1)
into Eq. (2) is to remove the explicit dependence of the stiffness
constant ‘c’ in Eq. (1). In the numerical solution, i.e., Eq. (3), the
stiffness constant appears only in the exponential term. By remov-
ing the explicit dependence of the stiffness constant, the solution,
Eq. (3), may be obtained using large time-step ‘h’. Another major
critical step in Eq. (3) lies in choosing a proper approximation for
the integrand F(u,t) in the interval tn < t < tn + h. If F(u,t) is known
a priori for t < tn, then F(u,t) in the interval tn < t < tn + h may be
obtained using interpolation with its previous values and the
integral in Eq. (3) can be evaluated (Beylkin et al., 1998;Nie et al.,
2006). In case if F(u,t) is not known a priori, then F(u,t) in the time
interval tn < t < tn + h can be obtained from the Taylor’s series
expansion of F(u,t).

Consider the point kinetics equations given by

dpðtÞ
dt
¼ qðtÞ � b

^

� �
pðtÞ þ

X6

i¼1

kiCiðtÞ ð4Þ

dCi

dt
¼ bi

^

� �
pðtÞ � kiCi ði ¼ 1;2 . . . 6Þ ð5Þ

In the above Eqs. (4) and (5), p is the power, ^ is the prompt neutron
generation time, bi is the effective fraction of the ith group of
delayed neutrons, b is the total effective fraction of delayed

neutrons b ¼
P6

i¼1bi

� �
; ki and Ci are the decay constant and precur-

sor concentration of the ith group of delayed neutron. The initial

conditions of the point kinetics equations are chosen as
pðt ¼ 0Þ ¼ p0; ciðt ¼ 0Þ ¼ bi

^ki
p0; p0 is the steady state power before

the introduction of any external reactivity. The neutron generation
time is of the order of �10�5 s for thermal reactors and it is of the
order of �10�7 s for fast reactors. Here the stiffness constant
appears as 1

^. To solve the point kinetics equations by the modified
ETD method, Eqs. (4) and (5) are multiplied by the integrating factor
e

t
^ and integrated over a single time-step from t = tn to t = tn+1 = tn + -

h, to get

Z tnþ1

tn

d
dt

pe
t
^

� �
dt ¼

Z tnþ1

tn

qðtÞ � b
^

� �
pe

t
^dt

þ
Z tnþ1

tn

X6

i¼1

kiCiðtÞe
t
^dt þ 1

^

Z tnþ1

tn

pe
t
^dt ð6Þ

Z tnþ1

tn

d
dt

Cie
t
^

� �
dt ¼

Z tnþ1

tn

bi

K
pe

t
^dt þ 1

^ � ki

� �Z tnþ1

tn

CiðtÞe
t
^dt ð7Þ

After integrating and rearranging Eqs. (6) and (7), we get

pðtnþ1Þ ¼ pðtnÞe
�h
^ þ

Z h

0
e

s�h
^

qðtn þ sÞ
^ pðtn þ sÞds

þ 1� b
^

� �Z h

0
e

s�h
^ pðtn þ sÞds

þ
Z h

0
e

s�h
^
X6

i¼1

kiCiðtn þ sÞds ð8Þ

Ciðtnþ1Þ ¼ CiðtnÞe
�h
^ þ bi

K

Z h

0
e

s�h
^ pðtn þ sÞds

þ 1
^ � ki

� �Z h

0
e

s�h
^ Ciðtn þ sÞds ð9Þ

Here, in the above Eqs. (8) and (9), we expand p(tn + s) and Ci (tn + s)
as a polynomial in derivatives using Taylor’s series expansion of
order ‘S � 1’. They are expanded as

pðtn þ sÞ ¼
XS�1

k¼0

rkpðtnÞ
sk

k!
ð10Þ

Ciðtn þ sÞ ¼
XS�1

k¼0

rkCiðtnÞ
sk

k!
ð11Þ

where rk ¼ dk

dtk. The reason for expanding the power and precursor
concentrations using Taylor’s series is that they require only
present values and previous power history is not required. The local
truncation errors in the Taylor’s series expansion of p(tn + s) and
Ci(tn + s) are termed as R1(p) and R2(Ci) respectively and they are
given as

R1ðpÞ ¼
X1
k¼S

rkpðtnÞ
sk

k!
ð12Þ

R2ðCiÞ ¼
X1
k¼S

rkCiðtnÞ
sk

k!
ð13Þ

Substituting Eqs. (10) and (11) into Eqs. (8) and (9), we get

pðtnþ1Þ ¼ pðtnÞe
�h
^ þ 1
^

Z h

0
e

s�h
^ qðtn þ sÞ

XS�1

k¼0

rkpðtnÞ
sk

k!

 !
ds

þ 1� b
^

� �Z h

0
e

s�h
^
XS�1

k¼0

rkpðtnÞ
sk

k!

 !
ds

þ
X6

i¼1

ki

Z h

0
e

s�h
^
XS�1

k¼0

rkCiðtnÞ
sk

k!

 !
ds ð14Þ
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