Annals of Nuclear Energy 76 (2015) 421-430

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene

### Technical note

# The influence of condenser cooling seawater fouling on the thermal performance of a nuclear power plant

## Said M.A. Ibrahim<sup>a</sup>, Sami I. Attia<sup>b,\*</sup>

<sup>a</sup> Department of Mechanical Power Engineering, Faculty of Engineering, AL-Azhar University, Nasr City, Cairo 11371, Egypt <sup>b</sup> Nuclear Power Plants Authority, 4 El-Nasr Avenue, P.O. Box 8191, Nasr City, Cairo 11371, Egypt

#### ARTICLE INFO

Article history: Received 24 June 2014 Received in revised form 30 August 2014 Accepted 21 October 2014 Available online 6 November 2014

Keywords: PWR secondary cycle Condenser cooling seawater Fouling factor Thermodynamic Heat transfer

#### ABSTRACT

This study performs a thermodynamic analysis and energy balance to study the effect of fouling change on the thermal performance of the condenser and the thermal efficiency of a proposed nuclear power plant. The study is carried out on a pressurized water reactor nuclear power plant. The results of the study show that the increasing of fouling factor decreases the power output and the thermal efficiency of the nuclear power plant. The main results of this study is that the impact of an increase in the condenser cooling seawater fouling factor in the range 0.00015–0.00035 m<sup>2</sup> K/W is led to a decrease in the plant output power and thermal efficiency of 1.36% and 0.448%, respectively. The present paper researches into a real practical factor that has significant negative effect on the thermal efficiency of the nuclear power plants, which is fouling of condenser cooling seawater. This is abundantly important since one of the top goals of new power stations are to increase their thermal efficiency, and to prevent or minimize the reasons that lead to loss of output power.

© 2014 Elsevier Ltd. All rights reserved.

#### 1. Introduction

The condenser in a steam electric power generation station is one of the most influential items of equipment in the system as related to performance. The concept of fouling has been incorporated to understand the thermal losses inside the condenser. The fouling of the condenser cooling water has an impact on the thermal performance of the condenser which finally affects nuclear power plant's efficiency and its output power.

Fouling represents an important problem for condensers and heat exchangers. All industrial circuits cooled with natural fresh and marine water are affected by the phenomenon of biological fouling consisting in biofilm growth and settlements of several kinds of living organisms. Biofouling is detrimental to open cooling systems as it causes undesirable effects, such as efficiency loss inside the heat exchanger, clogging of the seawater circuit pipes, and reduction in plant reliability over a period of time. Most of the power generation plants efficiently operate by using the basic tools of physical screening, physical cleaning and chemical dosing. A traditional chemical way to control microbial growth and biofouling in power plants remains the use of chlorine, in spite of the fact that chlorination was subjected to the environmental authorities' attention for more than 20 years, because of its halomethanes and other organohalogens by-products items.

Fig. 1 illustrates how the temperature distribution is affected by the presence of the individual fouling layers.

The importance of fouling phenomena stems from the fact that the fouling deposits increase the thermal resistance to heat flow. According to the basic theory, the heat transfer rate in the exchanger depends on the sum of thermal resistances between the two fluids. Fouling on one or both fluid sides adds the thermal resistance to the overall thermal resistance and, in turn, reduces the heat transfer rate. Simultaneously, hydraulic resistance increases because of a decrease in the free flow area. Consequently, the pressure drops and the pumping power increase.

Increase in condenser cooling seawater fouling factor and temperature may have impact on the capacity utilization of thermal power plants in two concerns: (1) reduced efficiency: increased environmental temperature and fouling factor reduces thermal efficiency of a thermal power plant, (2) reduced load: for high environmental temperatures and fouling factor, thermal power plant's operation will be limited by a maximum possible condenser pressure. The operation of plants with river or sea cooling water will in addition be limited by a regulated maximum allowable temperature for the return water or by reduced access to water.

In the literature, there are few articles published to identify these climate and environmental change impacts; few have tried





RUCLEAR PRIERCY

<sup>\*</sup> Corresponding author.

#### Nomenclature

| A<br>c<br>d<br>h<br>f<br>K<br>LMTD<br>m<br>P<br>Q<br>R<br>r<br>T<br>T<br>T<br>T<br>D<br>U | tube area [m <sup>2</sup> ]<br>specific heat [k]/kg K]<br>diameter [m]<br>enthalpy [k]/kg]<br>fouling factor [m <sup>2</sup> K/W]<br>thermal conductivity [W/m K]<br>log mean temperature difference [°C]<br>mass flow rate [kg/s]<br>pressure [bar]<br>net rate of heat transferred [kW]<br>thermal resistance[m <sup>2</sup> K/W]<br>radius [m]<br>temperature [°C]<br>terminal temperature difference[°C]<br>overall heat transfer coefficient [W/m <sup>2</sup> K] | CL<br>cwo<br>fw<br>FWP<br>HL<br>HPT<br>LPT<br>i<br>in<br>mix<br>o<br>out<br>p<br>RCW<br>Rej | cold leg<br>cooling water outlet<br>feed water<br>feed water pump<br>hot leg<br>high pressure turbine<br>low pressure turbine<br>inlet<br>inlet<br>mixture<br>outlet<br>outlet<br>pump<br>reactor cooling water<br>rejection |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V                                                                                         | velocity [m/s]                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Т                                                                                           | turbine                                                                                                                                                                                                                      |
| W                                                                                         | net rate of work [kW]                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W                                                                                           | wall                                                                                                                                                                                                                         |
| w pure water                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Superscript                                                                                 |                                                                                                                                                                                                                              |
| Greek symbols                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             | per unit time                                                                                                                                                                                                                |
| η                                                                                         | efficiency [%]                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                              |
| μ                                                                                         | viscosity, [kg/m s]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Abbreviations                                                                               |                                                                                                                                                                                                                              |
| ho                                                                                        | density, [kg/m <sup>3</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                          | FW                                                                                          | feed water                                                                                                                                                                                                                   |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HP                                                                                          | high pressure                                                                                                                                                                                                                |
| Subscrip                                                                                  | ts<br>addad                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LP                                                                                          | low pressure                                                                                                                                                                                                                 |
| add                                                                                       | added                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DVVB                                                                                        | nuclear power plant                                                                                                                                                                                                          |
| СР                                                                                        | condensate nump                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RC                                                                                          | reactor coolant                                                                                                                                                                                                              |
| CW                                                                                        | cooling water                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SG                                                                                          | steam generator                                                                                                                                                                                                              |
| cwi                                                                                       | cooling water inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             | č                                                                                                                                                                                                                            |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                              |

to quantify them. Qureshi and Zubair (2005), studied the effect of fouling on the thermal performance of heat exchangers at different air inlet wet bulb temperatures. Lankinen et al. (2003), defined the heat transfer efficiency as well as the external and internal pressure drops and the effect of fouling on the thermal hydraulic characteristics of the heat exchanger. Lei et al. (2012), discussed a simplified theoretical model to study fouling growth, the characteristic of fouling deposit, effects of working time, and cooling water velocity. Walker et al. (2012), presented a methodology to quantify the economic impact of condenser fouling on the performance of thermoelectric power plants. Webb and Ralph (2011), determined the performance and economic benefits of using enhanced condenser tubes in an existing nuclear plant. Prieto et al. (2001), gave the data that allow carrying out heat balances as well as other important data needed to estimate fouling evolution for seawater refrigerated condenser in a 550 MW power plant.



Fig. 1. Temperature distribution across fouled heat exchanger surfaces.

Pugh1 et al. (2003), studied the fouling during the use of seawater as coolant.

Ganan et al. (2005), showed that the performance of the pressurized water reactor (PWR) type Almaraz nuclear-power plant is strongly affected by the weather conditions having experienced a power limitation due to vacuum losses in condenser during summer. Durmayaz and Sogut (2006), presented a theoretical model to study the influence of the cooling water temperature on the thermal efficiency of a conceptual pressurized-water reactor nuclear power plant. Sanathara et al. (2013), gave a parametric analysis of surface condenser for 120 MW thermal power plant, focused on the influence of the cooling water temperature and flow rate on the condenser performance, and thus on the specific heat rate of the plant and its thermal efficiency.

The present study presents an analysis of the effect of the environmental conditions on the thermal performance of a proposed pressurized water reactor nuclear power plant (PWR NPP). The nuclear power plant performance depends on the thermal analysis of the condenser through heat transfer analysis taking into account the key parameters such as fouling factor and temperature of cooling seawater that affect the condenser performance of the plant. This parametric study illustrates the impact of the fouling factor of condenser cooling seawater within a range of 0.00015–0.00035 m<sup>2</sup> K/W, and temperature within a range of 15–30 °C.

#### 2. Methodology

The present parametric study presents an energy balance and heat transfer analysis of the plant. Therefore, the study is Download English Version:

# https://daneshyari.com/en/article/1728209

Download Persian Version:

https://daneshyari.com/article/1728209

Daneshyari.com