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a b s t r a c t

The paper presents a closed-form solution of the first-order Transport-Driven Diffusion (TDD) proposed
by Picca and Furfaro (2014). The solution is rigorously derived for two source configurations (i.e. Dirac’s
delta and rectangular source) to explicitly describe the contribution of the uncollided component and the
collided diffuse term. The results are employed to compare the solution of first-order Transport-Driven
Diffusion (TDDT with T = 1) with the analytical diffusion approximation as well as to validate numerical
solution of the TDD1. The comparison with higher-order TDD (i.e., (TDDT with T > 1) is also reported.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Besides its beauty and elegance, the analytical solution of a
physico-mathematical problem is of general interest because it
can provide insights on how input parameters may influence the
solution. Additionally, analytical results can be useful for deriving
benchmark reference solutions not affected by numerical errors.
Such reference solutions are generally used for code validation.

The closed-form solution of linear transport equation is possible
only for a very limited number of physical problems. For instance,
for certain configurations it is possible to derive a fully analytical
solution of the diffusion approximation for the Linear Boltzmann
Equation (LBE). Although not affected by numerical errors, the
analytical diffusion solution inherently suffers from model errors
and hence provides a distorted description for the real physical
problem of neutral particle transport. For instance, it is well-known
that the approximation of LBE with the diffusion equation is not
particularly accurate in a low scattering medium with localized
sources (e.g., Davison, 1957).

This paper explores the possibility of limiting the diffusion error
without losing the advantages of a closed-form solution. The
starting point for this quest is a novel approach for the solution of
LBE proposed by Picca and Furfaro (2014). The so-called Trans-
port-Driven Diffusion (TDD) is a hybrid methodology which
combines transport theory with diffusion theory for an optimized

description of source-driven problems, typically dominated by
transport for the first collisions and by diffusive collective behavior
after multiple collisions. As described in Picca and Furfaro (2014),
the flexibility of the method lies in the possibility to set ad hoc the
transition between transport and diffusion, TDDT being the approx-
imation where after the first T collisions the diffusion model is used.

In general, the above-mentioned TDD methodology needs
numerical tools for its solution. Conversely, the present work seeks
a closed-form solution of simplified configurations using the first-
order TDD (i.e., TDD1). For this purpose, a slab geometry homoge-
neous medium is considered and the analytical developments are
pushed as far as possible, using numerical tools with numerical
error control only where strictly necessary. The paper is organized
as follows: In Section 2, the neutral particle equation is presented.
In Section 3, the solution for diffusion and TDD1 approximation for
the problem driven by Dirac’s delta source term at the center of the
system is derived and results compared with a higher order TDD
approximation as well as with numerical discrete ordinate solution
(both of them solved numerically), which are regarded as reference
lines for comparison of lower order approximations (i.e., diffusion
and TDD1). Section 4 considers a problem driven by a symmetric
rectangular source and presents the corresponding diffusion and
TDD1 approximations. Section 5 presents the conclusions.

2. Neutral particle transport equation

The steady-state LBE in its one-dimension and one-angle for-
mulation for an homogeneous medium with isotropic scattering
can be written as (Davison, 1957):
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where l is the propagation direction (measured with respect to
positive x-axis), R the total cross section (inverse of absorption mean
free path), Rs the scattering cross section (inverse of scattering mean
free path), w(x, l, t) the angular flux (total length traveled by
neutrons in direction l per unit time and volume),

Rþ1
�1 wðx;l; tÞdl

scalar flux and s(x) the source term.
In case of homogeneous boundary conditions, the vacuum

conditions are set on entering angular flux, i.e.:

/ð�H=2; l > 0Þ ¼ 0
/ðþH=2; l < 0Þ ¼ 0

ð2Þ

The problem defined in Eqs. (1) and (2) can be approximated
with the following diffusion equation (Davison, 1957):

�D
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dx2 þ Rr

" #
/ðxÞ ¼ sðxÞ ð3Þ

and boundary condition:

/ð�H=2Þ ¼ 0 ð4aÞ

where

Rr ¼ R� Rs ð4bÞ

D ¼ 1
3
P ð4cÞ

The source terms in Eqs. (1) and (3) differ by the multiplication
factor 1/2 which is the angular redistribution in the one-angle,
one-dimensional geometry, which applied to transport and not to
diffusion.

In alternative to diffusion theory, the hybrid methodology pro-
posed by Picca and Furfaro (2014) can be applied to approximate
transport equation. The basic idea behind the first-order Trans-
port-Driven Diffusion (i.e., TDD1) is to seek the solution as a sum
of a collided (i.e. /c) and uncollided components (i.e., /u), i.e.:

/ðxÞ ¼
Z þ1

�1
/uðx;lÞdlþ /cðxÞ ð5Þ

The models employed for each of these components are the fol-
lowing collisionless transport equation and the diffusion equation,
respectively:
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and:
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where suðxÞ ¼ sðxÞ:

scðxÞ ¼
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The following Sections details the solution of Eq. (3) for diffu-
sion and Eqs. (6) and (7) for TDD1 for two source types.

3. Closed-form approximations of linear transport solution:
response to a Dirac’s delta function

In this section, the solution for diffusion and TDD1 approxima-
tion for the problem driven by Dirac’s delta source term at the cen-
ter of the system is derived.

3.1. Diffusion approximation

In a homogeneous medium, the solution of the diffusion equa-
tion can be derived by means of eigenfunction expansion of the
Laplacian in Eq. (3). For the slab geometry, the Helmholtz problem
can be written as follows (Hildebrand, 1965):

d2

dx2 u ¼ �B2u ð8Þ

and, considering the b.c. in Eq. (4), the normalized eigenfunctions
are:

/nðxÞ ¼
ffiffiffiffi
2
H

r
cos½Bnx� ð9aÞ

where

Bn ¼
ð2n� 1Þ

H=2
p
2
¼ ð2n� 1Þp

H
ð9bÞ

For n = 1, . . ., 1. Using the orthogonality property of the

eigenfunctions in Eq. (9a):
RþH=2
�H=2 unðxÞumðxÞdx ¼ dnm, the solution

can be written as:

/ðxÞ ¼ R1n¼1CnunðxÞ ð10aÞ
where

Cn ¼
Sn

Rr þ DB2
n

ð10bÞ

The projection of the source onto the eigenfunctions reads as
follows:

Sn ¼
Z þH=2

�H=2
unðxÞsðxÞdx ð11Þ

When considering a Dirac’s delta source term in the middle of
the system (i.e., s(x) = d(x)), it is easy to prove that the coefficients
in Eq. (9) become:

Sn ¼
ffiffiffiffi
2
H

r
ð12Þ

which is a constant with respect to n.

3.2. First-order transport-driven approximation

For the problem under analysis, the driving force in Eq. (7a)
becomes su(x) = d(x) and it can be proven that the uncollided com-
ponent for l > 0 is Picca and Furfaro (2014):

/uðx;l > 0Þ ¼
1
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0 for x < 0

(
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and, considering the symmetries in the problem when simulta-
neously changing x ? �x and l ? �l, for l < 0 it reads:

/uðx;l < 0Þ ¼
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� 1
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Using the identity: �
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the definition of exponential integral E1ðnÞ ¼
R 1

0
e�n=z

z dz, the scalar
flux can be written as:
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and the source term for diffusion in Eq. (7b) as scðxÞ ¼ 1
2 RsE1ðRjxjÞ.

The solution of diffusion model can be determined as detailed in
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