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a b s t r a c t

In this work we solve the transport equation with strongly anisotropic scattering, i.e., with a forward–
backward-anisotropic kernel. We treat the problem by finding an integral representation to the solution,
which we then project to a finite dimensional space. We verify numerically the robustness of the
techniques we develop by performing calculations for several cases found in the literature. Then we
obtain new numerical results for the transport equation with strongly anisotropic scattering when the
kernel has more than two terms. Our simulations allows us to obtain the total intensity, the total flux,
the dominant eigenvalue and the critical thickness with precision to at least five digits. These simulations
indicate that adding third and fourth kernel terms contributes to about 1% in the studied cases.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The transport equation with forward and backward scattering
was first introduced by Fermi (see Williams, 1985) and later
extended by Williams (1966), Inönü (1973) and Sahni et al.
(1992) providing greater flexibility in representing realistic scat-
tering cross sections (see the comments of Davison and Sykes,
1958). Although, these kernels were introduced for modeling of
neutron transport, they have also been used in radiative transfer
problems.

Much effort has been made to study the transport equation
with backward–forward-isotropic and backward–forward-linearly
anisotropic scattering in the last years. For instance, Spiga and
Vestrucci (1981) developed a semi-analytical algorithm to calcu-
late the critical total flux of the transport operator. Sahni et al.
(1992) applied discrete ordinates SN combined with the Carlvik’s
method to compute the eigenvalues of this operator. Ganapol
and Kornreich (1996) simulated the scalar flux by their Green’s
function method. Anli (2001) used a spectral Green’s function
method and the diamond difference scheme to obtain the total
intensity. Awatif and Elghazaly (2004) applied variational tech-
niques to calculate the albedo while Öztürk (2014) used UN

method to compute the critical thickness.

Sahni et al. (1992) consider the case of backward–forward-lin-
early anisotropic scattering, but as observed by the authors them-
selves the inclusion of anisotropic kernels of higher order in their
methodology yield great complications, thereby limiting their
methodology. Even more recent works (see, for instance, Öztürk,
2014; Yilmazer, 2007; Bülbül et al., 2011) have not presented
solutions for the general case where the kernel has very strong
anisotropies.

In the present paper we deal with the more general case involv-
ing strongly anisotropic scattering kernels using an extension of
the method introduced in our previous works (Azevedo et al.,
2011, 2013a). The method consists of transforming the transport
problem by an integral representation and projecting the involved
operators in finite dimensional spaces. Here, we focus our discus-
sion on the numerical point of view, while observing that the error
bounds in the present case can certainly be obtained using the
ideas presented by Azevedo et al. (2013a) and Sauter et al. (2012).

The neutron transport equation for strongly anisotropic scatter-
ing in a slab is given by

l @I
@y
þ k0I ¼ r0

Z 1

�1
x0ðl;l0ÞIðy;l0Þdl0 þ QðyÞ; y 2 ð0; LÞ ð1Þ

Ið0;lÞ ¼ B0ðlÞ; l > 0; ð2Þ
IðL;lÞ ¼ BLðlÞ; l < 0; ð3Þ

where 0 6 y 6 L is the spatial variable, l is the cosine of the angle
formed between the direction of the propagation and the axis
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y;QðyÞ is the source term, r0 is a constant and x0ðl;l0Þ is the scat-
tering kernel which is given by

x0ðl;l0Þ ¼ ð1� a0 � b0Þ
2

xðl;l0Þ þ a0dðl� l0Þ þ b0dðlþ l0Þ ð4Þ

where a0 and b0 are constants, a0 þ b0 6 1; d is a Dirac delta,

xðl;l0Þ ¼
XM

l¼0

blPlðlÞPlðl0Þ; ð5Þ

bl are constants and Pl are Legendre Polynomials of order l.
In the Section 2, we rewrite the model (1)–(3) in a integral for-

mulation. In the Section 3, we apply the kernel structure (5) to
write the integral formulation in a system of more simple opera-
tors. In the Section 4, we discretize the integral operator in finite
dimensional matrices. In the Section 5, we validate the methodol-
ogy and compute numerical results for the transport equation with
strongly anisotropic scattering. In the Section 6, we give our final
conclusions.

2. Integral formulation

Following the ideas presented by Azevedo et al. (2011, 2013a),
Sauter et al. (2012) we reformulate the problem (1)–(3) to obtain
the solution in terms of an integral equation. First, we use the
kernel x0 (4) and the properties of the Dirac delta function to
rewrite Eq. (1) as follows:

l @I
@y
ðy;lÞ þ kIðy;lÞ � bIðy;�lÞ ¼ r

2

Z 1

�1
xðl;l0ÞIðy;l0Þdl0 þ QðyÞ;

ð6Þ

with y 2 ð0; LÞ and t > 0, where k ¼ k0 � r0a0;b ¼ r0b0, and
r ¼ r0ð1� a0 � b0Þ.

Now we rewrite the problem (1)–(3) in a integral formulation.
For this propose, we consider the auxiliary problem:

l @I
@y
ðy;lÞ þ kIðy;lÞ � bIðy;�lÞ ¼ qðy;lÞ; ð7Þ

IðlÞ ¼ B0ðlÞ; l > 0; ð8Þ
IðlÞ ¼ BLðlÞ; l < 0: ð9Þ

This problem can be solved by applying the method of ray tracing,
which consists in integrating the transport equation along the ray’s
direction (see, for instance, Sauter et al., 2012; Modest, 2003).
Eq. (7) is equivalent to the system:

@

@y
Iðy;lÞ

Iðy;�lÞ

� �
þ EðlÞ

Iðy;lÞ
Iðy;�lÞ

� �
¼ Fðy;lÞ ð10Þ

where

EðlÞ ¼ 1
l

k �b

b �k

� �
and Fðy;lÞ ¼

1
l qðy;lÞ
� 1

l qðy;�lÞ

" #
ð11Þ

The solution of (10) can be expressed in two ways:

Iðy;lÞ
Iðy;�lÞ

� �
¼ e�EðlÞy Ið0;lÞ

Ið0;�lÞ

� �
þ
Z y

0
e�EðlÞðy�sÞFðs;lÞds ð12Þ

or

Iðy;lÞ
Iðy;�lÞ

� �
¼ e�EðlÞðy�LÞ IðL;lÞ

IðL;�lÞ

� �
�
Z L

y
e�EðlÞðy�sÞFðs;lÞds; ð13Þ

where the exponential matrix e�EðlÞy is equal to:

1
2c

kðe�
c
ly � e

c
lyÞ þ cðe�

c
ly þ e

c
lyÞ b e

c
ly � e�

c
ly

� �
�b e

c
ly � e�

c
ly

� �
kðe

c
ly � e�

c
lyÞ þ cðe�

c
ly þ e

c
lyÞ

264
375

with c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � b2

q
.

Applying the boundary conditions (2), (3) in the second compo-
nent of (12) and the first component of the (13) we obtain the
intensity in the outer directions:

Ið0;�lÞ ¼ 2c
ke

c
lL� ke�

c
lLþ ce

c
lLþce�

c
lL

� BLð�lÞþ 1
l

Z L

0

b �e�
c
lðL�sÞ þ e

c
lðL�sÞ

� �
2c

qðs;lÞds

0@
þ 1

l

Z L

0

kðe
c
lðL�sÞ � e�

c
lðL�sÞÞþcðe�

c
lðL�sÞ þ e

c
lðL�sÞÞ

2c
qðs;�lÞds

!

þ
b e

c
lL�e�

c
lL

� �
ke

c
lL� ke�

c
lLþce

c
lLþce�

c
lL

B0ðlÞ

ð14Þ

IðL;lÞ ¼ �BLð�lÞ
b e�

c
lL � e

c
lL

� �
�ke�

c
lL þ ke

c
lL þ ce�

c
lL þ ce

c
lL

þ 2c
�ke�

c
lL þ ke

c
lL þ ce�

c
lL þ ce

c
lL

 !

� B0ðlÞ þ
1
l

Z L

0

kðe
c
ls � e�

c
lsÞ þ cðe

c
ls þ e�

c
lsÞ

2c
qðs;lÞds

 

� 1
l

Z L

0

b �e
c
ls þ e�

c
ls

� �
2c

qðs;�lÞds

1A
ð15Þ

Then we substitute (14) and (15) into the system (12)–(13), we
obtain the following integral formulation:

Iðy;lÞ ¼ Ll
g qðy;lÞ þ Ll

b B: ð16Þ

where B ¼ ðB0;BLÞ.
Now we observe that the original problem (1)–(3) takes the

form of (7)–(9) by assuming qðy;lÞ ¼ rJðy;lÞ þ QðyÞ where J is
defined by:

Jðy;lÞ :¼ 1
2

Z 1

�1
xðl;l0ÞIðy;l0Þdl0: ð17Þ

Taking into account Eq. (16), the solution of (1)–(3) satisfies

ð19ÞIðy;lÞ ¼ Ll
g rJðy;lÞ þ QðyÞ½ � þ Ll

b B: ð18Þ

Substituting (19) in (17) we obtain:

Jðy;lÞ ¼ r
2

Z 1

�1
xðl;l0ÞLl0

g Jðy;l0Þ þ QðyÞ
h i

þxðl;l0ÞLl0
b B

n o
dl0;

:¼ Lg rJðy;lÞ þ QðyÞ½ � þ LbB; ð19Þ

where the operators Lg : C0 ½0; L�; L1½�1;1�ð Þ ! C0 ½0; L�; L1½�1;1�ð Þ
and Lb : L1½0;1� � L1½�1; 0�ð Þ ! C0 ½0; L�; L1½�1;1�ð Þ are given by
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