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a b s t r a c t

Nuclear reactor core power distribution on-line monitoring system is very important in core surveillance,
and this system should have the ability to indicate some abnormal conditions, such as the unacceptable
control rod misalignment. In this study, the methodologies of radial basis function neural network
(RBFNN), group method of data handling (GMDH) and Levenberg–Marquardt (LM) algorithm are utilized
separately to unfold the control rod position from the fixed in-core neutron detector measurements. For
using these methods, a large number of in-core detector signals corresponding to various known rod
positions are needed. These data can be generated by an advanced core calculation code. In this study,
the neutronics code SMART was used. The simulation results show that all these methods can unfold
the control rod position accurately, and the performance comparison shows that the regularized RBFNN
performs best. Two correction strategies are proposed to correct the simulated fixed in-core detector sig-
nals and improve the rod position monitoring accuracy when there are mismatches between actual phys-
ical factors and modeled physical factors.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Core power distribution monitoring in operating power reactors
is very important in core surveillance (Peng et al., 2014a), the
power distribution is one of the basic operation parameters which
can determine many other important parameters such as power
peaking factor, enthalpy rising factor and quadrant tilt ratio used
to evaluate the operation condition of reactor and the safe margin.
The control rod has a strong local effect on power distribution, so
the power distribution monitoring system should be able to detect
the abnormity of the control rod. Traditionally, control rod posi-
tioning systems are based on electromechanical devices. The unac-
ceptable rod misalignment may occur as a result of an electrical or
mechanical failure. If the position of the rod cannot be verified, the
rod positioning system must be considered inoperable. A reactor
shutdown is usually necessary if more than one rod is considered
inoperable. To detect de-calibration or abnormity of the standard
rod positioning instrumentation, an alternative method is needed.

The idea of using the information that exists in the axial flux
shape to determine the rod position was proposed by Garis and
his co-workers (Garis et al., 1998). The flux shape can be measured

in the close vicinity of a fuel assembly containing a control rod
assembly. The relationship between flux shapes and rod positions
is rather implicit, so the neural network techniques are utilized
to unfold the rod position from the axial flux shape which was
measured by movable in-core detectors. Garis used a simple
three-layered BP neural network and the training set was gener-
ated by the core master code SIMULATE. This BP neural network
method was tested with good results on both fully simulated data
as well as on a measurement taken at the Swedish pressurized
water reactor Ringhals 4. Li and his co-workers (Li et al., 2010) pro-
posed a Levenberg–Marquardt algorithm based method to unfold
the rod position of high-temperature gas-cooled reactor from the
ex-core detectors. The theoretical signals of the ex-core detector
were formulated as the polynomials of the rod position, and these
polynomials with real ex-core detector measurements formed an
over-determined nonlinear system. The Levenberg–Marquardt
algorithm was utilized to solve the over-determined nonlinear sys-
tem. The simulation results showed that this method was accurate
and robust.

Many works about the application of neural network and other
nonlinear fitting methods in nuclear field have been published.
Neural network has been used to predict the power peak factor
accurately and in time in reactor protection systems (Souza and
Moreira, 2006). The neural network inputs are the position of con-
trol rods and signals of ex-core detectors. The radial basis function
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network can produce slightly better results than the multilayer per-
ceptron network, and the power peak factor safety margin can be
decreased as much as 5%. In another work (Na et al., 2004), the axial
Departure from Nucleate Boiling Ratio (DNBR) distribution at the
hot pin position is predicted by the fuzzy neural networks using
the measured signals of the reactor coolant system. The method
has been applied to the first cycle of the Yonggwang 3 nuclear
power plant. The simulation results show that this algorithm can
provide reliable protection and monitoring information for the
nuclear power plant operation and diagnosis by accurately predict-
ing the DNBR each time step. Recently, Park introduced (Park et al.,
2014) the group method of data handling (GMDH) algorithm to
reconstruct 20-node axial core power shapes from five-level in-core
detector power measurements. The GMDH algorithm is based on
the evolutionary algorithm selecting the optimal representation
of polynomial support functions that describe the optimal func-
tional form of given measurements according to a specified crite-
rion. The simulation results showed that the GMDH algorithm is a
promising data driven modeling algorithm, hence tending to
become an interesting option for engineering applications.

In this study, the methodologies of radial basis function neural
network (RBFNN), group method of data handling (GMDH) and
Levenberg–Marquardt (LM) algorithm are utilized separately to
unfold the control rod position from the fixed in-core neutron
detector measurements, and comparison has been made to show
which method performs the best. The measurements belong to
training data set and test data set are simulated by neutronics code
SMART. In addition, two correction strategies are proposed to cor-
rect the detector measurements of training data set and improve
the rod position monitoring accuracy when there are mismatches
between actual physical factors and modeled physical factors.

2. Methodology

2.1. Levenberg–Marquardt algorithm

The Levenberg–Marquardt (LM) algorithm is an iterative tech-
nique that locates the minimum of a multivariate function that is
expressed as the sum of squares of non-linear real-valued function.
It has become a standard technique for non-linear least-squares
problem, and LM can be thought of as a combination of steepest
descent and the Gauss–Newton method. Because the algorithm
has been introduced in many papers, its mathematical formula-
tions are not repeated in this paper.

2.2. Radial basis function neural network

The RBF network is a standard three-layer (J1 � J2 � J3) neural
network, with the first input layer consisting of d input nodes,
one hidden layer consisting of m radial basis functions in the hid-
den nodes and a linear output layer. There is an activation function
/ð�Þ for each of the hidden node. The hidden layer performs a non-
linear transform of the input, and the output layer is a linear com-
biner mapping the nonlinearity into a new space. Usually, the same
RBF is applied on all nodes; that is, the RBF nodes have the nonlin-
earity /ið~xÞ ¼ /ðk~x�~cikÞ; i ¼ 1; . . . ; J2, where ~ci is the center of
the i-th node and /ð~xÞ is a RBF. The biases of the output layer neu-
rons can be modeled by an additional neuron in the hidden layer,
which has a constant activation function.

For input ~x, the output of the RBF network is given by

yið~xÞ ¼
XJ2

k¼1

wki/ðk~x�~ckkÞ; i ¼ 1; . . . ; J3; ð1Þ

where yið~xÞ is the i-th output, wki is the connection weight from the
k-th hidden unit to the i-th output unit, and k�k denotes the Euclid-

ean norm. The RBF /ð�Þ is typically selected as the Gaussian func-

tion, i.e. /ðrÞ ¼ exp � r2

2r2

� �
, where r is known as width.

For a set of N samples f~xk; ykg
N
k¼1, Eq. (1) can be expressed in the

matrix form

Y ¼WTU ð2Þ

where W ¼ ½~w1; . . . ; ~wJ3 � is a J2 � J3 matrix, ~wi ¼ w1;i; . . . ;wJ2 ;i
� �T

;U ¼

½~/1; . . . ;~/N� is a J2 � N matrix, ~/p ¼ /p;1; . . . ;/p;J2

� �T
is the output of

the hidden layer for the pth sample, that is,
/p;k ¼ /ðk~xp �~ckkÞ;Y ¼½~y1; . . . ;~yN� is a J3 � N matrix, and

~yp ¼ yp;1; . . . ; yp;J3

� �T
(see Fig. 1).

The learning in RBF is done in two stages. Firstly, the widths and
the centers are fixed. Next, the weights are found by solving the
linear equation. The center ~ci can be selected by clustering. The
width usually is fixed. Once the centers have been selected, the
weights that minimize the output error are computed by solving
a linear pseudo-inverse solution

W ¼ UT
� �y

YT ¼ UUT
� ��1

UYT : ð3Þ

2.3. Group method of data handling (GMDH)

The GMDH algorithm is based on an inductive self-organizing
approach to the estimation of black box models with unknown
relationships between variables. Fig. 2 shows the branch structure
of the GMDH algorithm. It begins with the basic inputs at the first
level and becomes more complex according to the increasing num-
ber of layers. The general form of original GMDH model is as
follows:

y ¼ f ðxi; xjÞ ¼ Aþ Bxi þ Cxj þ Dx2
i þ Ex2

j þ Fxixj ð4Þ

The coefficient parameters which is written such as A,B,. . .,F can be
obtained by using a least square method in an arbitrary pair ðxi; xjÞ
from independent variables ~x ¼ ðx1; x2; . . . ; xmÞ. The GMDH model
uses the Kolmogorov–Gabor form of a high-order polynomial as
follows:

y ¼ a0 þ
Xm

i¼1

aixi þ
Xm

i¼1

Xm

j¼1

aijxixj þ
Xm

i¼1

Xm

j¼1

Xm

k¼1

aijkxixjxk . . . ð5Þ

The GMDH model can determine the structure of the model and
also calculate the system output of the most important inputs
simultaneously. This uses the composition of the lower-order poly-
nomials, which means that the GMDH model amalgamates lower
order polynomials at each generation to reach the subsequent gen-
eration. The process of the algorithm is stopped and the optimum fit
of the previous generation is selected as the optimized model if
over-fitting has been found.

The main steps in the implementation of the GMDH algorithm
are as follows:

(1) Construct each of input and output variables or data of the
system. The data structure is modeled and divided into the
training and checking data sets.

(2) Choose the external inputs to the GMDH network. Calculate
the regression polynomial parameters for each pair of input
variables involved in the training data set using the least
squares method. Calculate the high-order variables in place
of the original input variables in order to predict the output.

(3) Calculate the output for all checking observations not
included in training set and store the observations into the
matrix O.
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