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a b s t r a c t

A variable order spherical harmonics scheme has been described and employed for the solution of the
neutral particle transport equation. The scheme is specifically described with application within the
inner-element sub-grid scale finite element spatial discretisation. The angular resolution is variable
across both the spatial and energy dimensions. That is, the order of the spherical harmonic expansion
may differ at each node of the mesh for each energy group. The variable order scheme has been used
to develop adaptive methods for the angular resolution of the particle transport phase-space. Two types
of adaptive method have been developed and applied to examples. The first is regular adaptivity, in which
the error in the solution over the entire domain is minimised. The second is goal-based adaptivity, in
which the error in a specified functional is minimised. The methods were applied to fixed source and
eigenvalue examples. Both methods demonstrate an improved accuracy for a given number of degrees
of freedom in the angular discretisation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Boltzmann transport equation governs the transport of fun-
damental particles. The equation is solved to obtain the average
statistical distribution of a given particle type within a certain
model. This distribution is dependent on space, direction of travel
and energy. Knowledge of this distribution is required in
disciplines such as atmospheric physics, medical imaging, and
the primary focus of this work, nuclear engineering. The determin-
istic solution of the transport equation is possible through a variety
of numerical methods; however, the computational cost of such a
solution can grow rapidly if high accuracy is desired. This arises
primarily due to the directional/angular dependence of the particle
distribution. The typical approach to solve the transport equation
is to apply a uniform angular resolution over the space and energy
dimensions. However, this requires that the whole space-energy
domain use the same angular resolution required to resolve the
most directional part of a distribution. This is inefficient because
in many problems the angular distribution may be isotropic in

certain regions whilst highly anisotropic in others. A specific exam-
ple is that of a thermal nuclear reactor, high energy neutrons with-
in fuel pins have an isotropic distribution due to the nature of
fission, however, the angular distribution becomes more direc-
tional in the clad and moderator region outside the fuel pin. The
low energy neutrons will in general demonstrate the opposite, they
will be isotropic in the moderator but show more directional fea-
ture near control rods and fuel pins. Therefore, the required angu-
lar resolution for a given accuracy is highly dependent upon the
model geometry and material properties. This paper presents an
adaptive method designed to optimise the angular resolution to
obtain the greatest accuracy for the lowest computational expense.

An adaptive method may be defined as an automated process
which modifies discretisations in numerical calculations in order
to optimise computational usage. There are two main categories
of adaptivity, regular and goal-based. Regular adaptivity reduces
the error in the solution over the entire domain. Goal-based adap-
tivity reduces the error in a user-defined functional of the solution.
Goal-based adaptivity in general will produce a more efficient and
accurate discretisation for a given quantity than regular. The use of
adaptive methods in spatial dimensions for finite elements and
similar discretisations is well researched due to its utilisation in
a large number of fields. Spatial adaptivity has been applied to

http://dx.doi.org/10.1016/j.anucene.2014.03.030
0306-4549/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +44 7903 627 836.
E-mail addresses: m.goffin10@imperial.ac.uk, mark.a.goffin@gmail.com

(M.A. Goffin).

Annals of Nuclear Energy 71 (2014) 60–80

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2014.03.030&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2014.03.030
mailto:m.goffin10@imperial.ac.uk
mailto:mark.a.goffin@gmail.com
http://dx.doi.org/10.1016/j.anucene.2014.03.030
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


the Boltzmann transport equation in various forms and shown to
produce beneficial results (Duo et al., 2009; Mirza et al., 2007;
Wang et al., 2009; Wang and Ragusa, 2011; Zhang and Lewis,
2002; Lathouwers, 2011b; Lathouwers, 2011a; Turcksin et al.,
2010). Despite the large computational cost related to the angular
component of the transport solution there has not been significant
study into adaptivity within the angular dimension.

There are two well known and commonly used discretisations
for the angular dimension of the particle distribution; the spherical
harmonics (PN) method and the discrete ordinates (SN) method.
There has been recent investigation into using wavelets as angular
basis functions but this is less commonly used (Buchan et al.,
2008a; Buchan et al., 2005; Cao et al., 2008; Yang et al., 2010;
Zheng et al., 2009; Zheng et al., 2012). The literature shows that re-
search has been undertaken in optimising each of these methods.
The first known attempt to improve the efficiency of a transport
calculation through adjusting the angular discretisation was by
Ackroyd and Wilson (1988). In this work they use the even-parity
(second-order) PN method in 1D with variable resolution over the
spatial domain. The resolution was set by intuitively using a priori
knowledge of the material properties and the predicted solution.
This is not an adaptive process but it demonstrates the same prin-
ciples whereby the automated process is replaced by user intui-
tion. This idea was extended by Mohan et al. to first-order
transport in 3D (Mohan et al., 2011). This demonstrated the vari-
able resolution PN method over space within a spherical geometry.
The results showed that solutions with comparable accuracy could
be obtained for fewer degrees of freedom and smaller run times.

The first implementation of adaptivity within the angular
dimension was completed by Watson (2005). In his work he devel-
oped an angular scheme that used a discrete ordinate discretisation
in the polar angle and a wavelet expansion in the azimuthal angle.
He demonstrated an adaptive algorithm using a thresholding tech-
nique for the coefficients of the wavelet basis functions. This meth-
od showed promise because it delivered a smaller error for a
reduced number of unknowns and computation time. Research in
adaptivity with wavelets was expanded by Buchan et al. which used
a two-dimensional wavelet expansion over the surface of the
sphere for both the polar and azimuthal angles (Buchan et al.,
2008b). This work uses higher order wavelet functions and applies
a similar thresholding type of adaptive algorithm. It was found that
the number of unknowns could be reduced by an order of magni-
tude and retain the same accuracy for two-dimensional models.

There are two known implementations of adaptivity using
spherical harmonics, the first was completed by Park (2006,
2009). The focus of his work was a coupled space-angle adaptive
process which used the PN method within a finite element discret-
isation. Park developed an implicit angular error estimator for the
second order even-parity transport equation and used it to adapt
the resolution of the spherical harmonics over the spatial domain.
He demonstrated the use of both regular and goal-based adaptivity
for the angular discretisation. The results showed significant
decrease in the number of unknowns for a given accuracy and a
decrease in run time for most problems. The second implementa-
tion of adaptive spherical harmonics was by Rupp et al. (2011) in
solving the Boltzmann transport equation with application to
semiconductors. A variable order spherical harmonics resolution
was applied over the space and energy domain whilst solving the
first order transport equation. The error measure in this work uses
an analytical property of the spherical harmonics expansion which
relates the rate of decay of the expansion coefficients to the
smoothness of the function. This work reported a decrease in the
computational cost for a given accuracy by just under an order of
magnitude.

Adaptivity within the discrete ordinates discretisation was
initially investigated by Stone (2007). This work used adaptive

quadrature sets for the discrete ordinates discretisation. The differ-
ence between an interpolated value and a value calculated through
sweeping was used as the error measure. If the error was larger
than a user-set tolerance then additional quadrature points were
added to the discretisation. The method was shown to reduce the
ray effects phenomenon for far fewer degrees of freedom than a
uniform resolution over space. Jarrell built upon this method by
employing the same error measure to adapt using a new type of
quadrature set derived from linear discontinuous basis functions
on the surface of a sphere (Jarrell, 2010). He found that his method
obtained an excellent order of convergence but it was difficult to
predict the accuracy for highly directional distributions.

This paper extends upon the work completed by Park and Rupp
using spherical harmonics within an adaptive algorithm. The two
main differences in this work are: (i) the first order transport equa-
tion is solved using a different spatial discretisation, and (ii) the er-
ror estimators used in the adaptive process are different. This
article begins by describing the discretisations used for the first or-
der transport equation in Section 2. The regular and goal-based er-
ror measures are described in Sections 3 and 4. An overview of the
procedure used for adapting the angular discretisation is outlined
in Section 5. Section 6 provides a simple example to demonstrate
a problem encountered during the work. The adaptive algorithm
has been applied to several examples and the results are displayed
in Section 7. Finally, the conclusions of the research are provided in
Section 8.

2. Transport equation

2.1. Multigroup energy discretisation

The multigroup approximation of the fixed source transport
equation results in the following set of equations:

X � rwgðr;XÞ þ Rt;gðrÞwgðr;XÞ ¼ ð1Þ

Z
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XG

g0¼1

Rs;g0!gðr;X0 ! XÞwg0 ðr;X0ÞdX0 þ Se;gðr;XÞ

for g 2 f1;2; . . . ;Gg; ð2Þ

where there are G energy groups and the subscript g denotes the gi-
ven quantities for each energy group. The multigroup equations for
an eigenvalue problem are

X �rwgðr;XÞþRt;gðrÞwgðr;XÞ¼
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Z
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wg0 ðr;X0ÞdX0

for g 2f1;2; . . . ;Gg: ð3Þ

The group angular flux distribution, wgðr;XÞ, is dependent on space,
r, and direction of particle travel, X. The group macroscopic cross-
sections are represented by Rt;g ;Rs;g0!g and Rf ;g for the total, scatter
and fission reactions respectively. In the fixed source equation, the
source term, Se, is an extraneous particle source. The fission spec-
trum and average number of neutrons produced per fission are rep-
resented by vg and m respectively. The eigenvalue of the equation is
represented by k.

The multigroup equations are coupled through the scatter and
fission terms. The equation for each energy group can be consid-
ered as a mono-energetic equation with an additional source from
the scatter and fission terms. The following sections will consider a
single group equation for simplicity and thus the subscript g will
be neglected but should be assumed implicit.
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