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a  b  s  t  r  a  c  t

This  paper  discusses  two  practical  aspects  of  reduced-order  models  (ROMs)  based  on proper  orthogonal
decomposition  (POD)  and  presents  the  derivation  and  implementation  of  a ROM  for  non-isothermal  mul-
tiphase  flow.  The  POD  method  calculates  basis  functions  for a reduced-order  representation  of two-phase
flow by  calculating  the  eigenvectors  of an  autocorrelation  matrix  composed  of  snapshots  of the flow.  The
flow is  divided  into  transient  and  quasi-steady  regions  and  two  methods  are  shown  for  clustering  snap-
shots in  the transient  region.  Both  methods  reduce  error as  compared  to  the  constant  sampling  case.  The
ROM  for  non-isothermal  flow  was  developed  using  numerical  results  from  a full-order  computational
fluid  dynamics  model  for a two-dimensional  non-isothermal  fluidized  bed. Excellent  agreement  is  shown
between  the reduced-  and  full-order  models.  The  composition  of  the  autocorrelation  matrix  is also  con-
sidered  for  an  isothermal  case.  An approach  treating  field  variables  separately  is  shown  to  produce  less
error than  a coupled  approach.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in computer hardware have led to a wide range
of new possibilities in the computational simulation of fluid flow.
Despite these advances, some flows contain sufficient complexity
to make numerical simulation a challenge. Multiphase flow in flu-
idized beds is one example. These flows contain dominant spatial
features that are difficult to identify and process variables whose
interactions are difficult to assess. High-fidelity, low cost models
for these flows are a necessity for both design and control. One
promising approach for this problem is reduced-order modeling.

Reduced-order models (ROMs) have come into wide use in the
simulation of fluid flows and seek to identify the dominant spatial
characteristics of the flow and then solve for the weighting coeffi-
cients for these “modes” instead of solving the governing equations
at many grid points (Dowell et al., 1999). This allows a reduction in
the degrees of freedom of the governing systems of equations from
tens of thousands or more to hundreds or less.

Early attempts to model fluid flows with ROMs focused on solv-
ing for small perturbations around a steady nonlinear flow field
(Florea & Hall, 1994; Florea, Hall, & Cizmas, 1997, 1998; Hall, 1994;
Hall, Florea, & Lanzkron, 1995). More recently, the validity of these
methods has been extended through the application of proper
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orthogonal decomposition (POD) (Cizmas & Palacios, 2003; Park
& Lee, 1998; Utturkar, Zhang, & Shyy, 2005). The POD method has
been used to identify the dominant spatial features of multiphase
flow (Cizmas, Palacios, O’Brien, & Syamlal, 2003) and a reduced-
order model based on POD has been implemented to reduce the
computational time needed to simulate a two-dimensional isother-
mal  multiphase flow at minimum fluidization (Yuan, Cizmas, &
O’Brien, 2005).

Interpolation methods have been used to calculate the temporal
weighting functions (Ding, Wu,  He, & Tao, 2008) and to enhance the
robustness of the ROM for parameter changes (Farhat & Amsallem,
2008). Error estimation in POD-based ROMs has been assessed to
determine the regions of validity for POD (Homescu, Petzold, &
Serban, 2005). Specific error estimates have been given for POD-
based ROMs for the Navier–Stokes equations (Wang & Ma,  2009)
and random fuzzy variables have been used to quantify error prop-
agation through POD-based ROMs (Chen & Hoo, 2010).

The effect of projecting partial differential equations (PDEs)
with stable numerical solution methods onto truncated bases has
been carefully considered (Rempfer, 2000). The stability require-
ments of the Runge–Kutta integration of the ODEs resulting from
the Galerkin projection of the Navier–Stokes equations onto a
suitable basis has been established (Giles, 1997). Further, the sta-
bility of the POD-based ROM for the linearized Euler equations,
including the effect of the boundary conditions, has been analyzed
(Barone, Kalashnikova, Segalman, & Thornquist, 2009). Stabiliza-
tion schemes have been developed to improve the accuracy of
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POD-based ROMs (Gloerfelt, 2008; Iollo, Lanteri, & Desideri, 2000;
Kalb & Deane, 2007). Spectral viscosity methods have been used
to correct long-term errors due to dissipative PDEs (Sirisup &
Karniadakis, 2004). The addition of shift-modes has been used to
improve the accuracy of models in transient flow regimes (Noack,
Afanasiev, Morzynski, Tadmor, & Thiele, 2003).

Reviews of POD-based ROMs have been presented (Dowell &
Tang, 2003; Lucia, Beran, & Silva, 2004). Specifically, POD based
ROMs have been used to model rocket nozzles for flow control
(Lucia, Pachter, & Beran, 2002) and for modeling airfoil cascades
in the frequency domain (Epureanu, Dowell, & Hall, 2000). Models
have been presented for deforming grids both with (Anttonen, King,
& Beran, 2003) and without multi-POD (Anttonen, King, & Beran,
2005) as well as for flow over heaving (Lewin & Haj-Hariri, 2005)
and deforming airfoils (Bourguet, Braza, & Dervieux, 2011).

POD-based ROMs have been implemented for modeling aero-
icing (Nakakita, Nadarajah, & Habashi, 2010) as well as to study
flow-fields for use in particle modeling (O’Donnell & Helenbrook,
2007). Steady supersonic flow has been predictively modeled
(Qamar & Sanghi, 2009). A finite element approach for solving Burg-
ers’ equation has also been reduced using POD (Luo, Zhou, & Yang,
2009). Recently, adaptive POD has been developed and applied
to the reaction/diffusion equations to model chemical reactions
(Singer & Green, 2009) and the transition to turbulence around a
NACA 0012 airfoil has been modeled and analyzed using a POD-
based ROM (Bourguet, Braza, Sevrain, & Bouhadji, 2009).

POD has been used extensively to analyze the low-dimensional
characteristics of experimental data (Tinney, Glauser, Eaton, &
Taylor, 2006; Tinney, Glauser, & Ukeiley, 2008) and computational
simulations (Caraballo, Samimy, Scott, Narayanan, & DeBonis,
2003; Noack, Papas, & Monkewitz, 2005). The effect of spatial grid
(Tinney, 2009) and time step (Brenner, Cizmas, O’Brien, & Breault,
2009) refinement has been assessed. The challenges inherent to
applying POD to problems with moving discontinuities have been
considered (Lucia, King, & Beran, 2003). Non-POD ROMs for mov-
ing discontinuities have been developed (Maple, King, Wolff, &
Orkwis, 2003). Very recently, methods for augmenting the POD
basis (Brenner, Fontenot, Cizmas, O’Brien, & Breault, 2010) and
adding artificial viscosity to POD-based ROMs have been proposed
for modeling moving discontinuities (Borggaard, Iliescu, & Wang,
2011).

POD-based ROMs have also been used to model non-isothermal
flows (Gunes, 2002) and methods have been devised to properly
couple the energy variable (Rowley, Colonius, & Murray, 2004).
They have been put to practical use in modeling the temperature
field in glass furnaces (Op den Camp, Verheijen, Huisman, & Backx,
2008) and, when used as part of a multi-scale model, heat trans-
fer in computer data centers (Samadiani & Joshi, 2010). Recently,
a genetic algorithm has been used to replace the Galerkin pro-
jection in the POD-based ROM to improve robustness and more
easily incorporate boundary conditions (Alonso, Velazquez, & Vega,
2009).

The objective of this paper is to present the derivation,
implementation and verification of a reduced-order model for non-
isothermal multiphase flow and to describe some practical aspects
that arise in the modeling of flow using ROMs based on POD. These
aspects include: (i) the effect of time sampling on approximation
error, and (ii) the influence of the form of the autocorrelation matrix
from which the basis functions are computed on the approximation
error. In the next section we present the hydrodynamic model used
to represent the fluidized bed. This is followed by a brief discussion
of the algorithm used to solve the governing equations specified by
this model. Next, the POD method is described and the reduced-
order model for two-dimensional isothermal flow is summarized.
The non-isothermal reduced-order model is derived and two model
problems are described. Next, methods for sampling the data and

creating the autocorrelation matrix are presented, including the
results of the study. Verification of the non-isothermal model is
completed and the results are discussed. Conclusions are subse-
quently presented.

2. Hydrodynamic model

The fluidized bed was modeled using a two-phase hydrody-
namic model (Syamlal, Rogers, & O’Brien, 1994). The governing
equations were based on the laws of mass, momentum and energy
conservation. In this model, the gas- and solids-phase mass balance
equations are given by

∂
∂t

(�m�m) + ∇ · (�m�m�vm) = 0 (1)

where m denotes the phase, � is the density, � is the volume frac-
tion, and �v is the velocity vector.

The gas- and solids-phase momentum balance equations are
given by

∂
∂t

(�m�m�vm) + ∇ · (�m�m�vm�vm) = −�m∇pg + ∇ · Sm + Fgs(�vs − �vg)

+ �m�m�g. (2)

Here the first two  terms of the right hand side represent the normal
and shear surface forces, respectively. The third term is the contri-
bution of the drag force on the solids and the fourth term is the
body force due to gravity.

The gas-phase energy balance equation is

�g�gCpg

(
∂Tg
∂t

+ �vg · ∇Tg
)

= −∇ · �qg + �g(Ts − Tg) − �Hg

+ �Rg(T4
Rg − T4

g ) (3)

and the solids-phase energy balance equation is given by

�s�sCps

(
∂Ts
∂t

+ �vs · ∇Ts
)

= −∇ · �qs + �s(Ts − Tg) − �Hs

+ �Rs(T4
Rs − T4

s ), (4)

where �qm is the conductive heat flux, �Hm is the heat of reaction
and �Rm is the heat transfer coefficient. Here m denotes the phase,
either gas or solids. The constant pressure specific heat coefficients
for the gas- and solids-phases are Cpg and Cps, respectively.

3. Full-order model

The term “full-order model” (FOM) refers to the numerical
model used to solve these governing equations and generate the
database of snapshots used by the POD method. The FOM was
developed at the Department of Energy’s National Energy Tech-
nology Laboratory and the implementation is the Multiphase Flow
with Interface eXchanges (MFIX) code (Syamlal et al., 1994). For
isothermal cases, this code solves a discretized version of Eq. (2)
and uses correction algorithms that satisfy Eq. (1) to calculate the
gas pressure and solids volume fraction. For non-isothermal cases,
discretized versions of Eqs. (3) and (4) are also solved.

The solutions of these equations were collected throughout the
time domain to form a database of snapshots for both the isother-
mal  and non-isothermal cases. For the isothermal case, snapshots of
six field variables were captured: x- and y-direction gas and solids
velocities, gas pressure, and void fraction (� = �g = 1 − �s). For the
non-isothermal case, the gas and solids temperature fields were
also collected.
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