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a b s t r a c t

In order to core calculation in the nuclear reactors there is a new version of neutron diffusion equation
which is established on the fractional partial derivatives, named Neutron Fractional Diffusion Equation
(NFDE). In the NFDE model, neutron flux in each zone depends directly on the all previous zones (not only
on the nearest neighbors). Under this circumstance, it can be said that the NFDE has the space history. We
have developed a one-dimension code, NFDE-1D, which can simulate the reactor core using arbitrary
exponent of differential operators. In this work a numerical solution of the NFDE is presented using
shifted Grünwald-Letnikov definition of fractional derivative in finite differences frame. The model is val-
idated with some numerical experiments where different orders of fractional derivative are considered
(e.g. 0.999, 0.98, 0.96, and 0.94). The results show that the effective multiplication factor (Keff) depends
strongly on the order of fractional derivative.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus is three centuries old, as much as conven-
tional calculus, but not very popular amongst the science and engi-
neering community. The beauty of this subject is that fractional
derivatives (and integrals) are not a local (or point) property
(or quantity) (Das and Basudeb, 2007). Therefore, it considers the
history and non-local distributed effects. Over a few decades this
subject has been of interest by scientists and engineers, due that
the fractional calculus may reflect the nature of the phenomena.
In the nuclear reactor there is a new version of the neutron diffu-
sion equation, which is established on the fractional derivatives.
In a recent work (Espinosa-paredes et al., 2013), a Fractional-Space
law of neutron diffusion equation is introduced. In the fractional
diffusion equation the Non-local gradient of Fick’s law is used
(J = �Dara/), where the fractional derivative operator ra can be
defined in the Riemann–Liouville, Caputo and Grünwald-Letnikov
sense (Das, 2012; Oldham and Spanier, 1974) and a is the order
of derivative. In the limit a ? 1, the Ficḱs law is recovered.
Fractional calculus deals with the study of the fractional order of
the integral and derivative operators over real or complex domains,
and its application in various fields of science and engineering is
reported in literatures (e.g., Balakrishnan, 1985; Oldham and Spa-
nier, 1974; Miller and Ross, 1993; Samko et al., 1993; Podlubny,
1999; Hilfer, 2000; Kilbas et al., 2006; Magin, 2006; Das and

Biswas, 2005). Until now, there is no reported numerical solution
of the NFDE so the full numerical scheme of neutron fractional
diffusion equation is described based on the shifted Grünwald-
Letnikov expression. The numerical solution of the NFDE in two
energy groups in a slab geometry is presented. Finally the results
of the NFDE with different orders of fractional derivatives (a) are
compared with results obtained by the neutron classical diffusion
equation.

2. Fractional calculus

2.1. History

Scientists and engineers meet with differential operators such
as @

@x ;
@2

@x2, sand so on, however few of them consider about whether
if it is necessary for the order of differentiation to be an integer.
Why not be a rational, fractional, irrational, or even a complex
number? At the very beginning of integral and differential calculus,
in a letter to LHopital in 1695, Leibniz himself raised the question:
Can the meaning of derivatives with integer order be generalized
to derivatives with non-integer orders? LHopital was somewhat
curious about that question and replied by another question to
Leibniz: What if the order will be 1/2? Leibniz in a letter dated
September 30, 1695 replied: It will lead to a paradox, from which,
one day, useful consequences will be drawn. The question raised
by Leibniz for a non-integer-order derivative was an ongoing topic
for more than 300 years, and now it is known as fractional calculus,
a generalization of ordinary differentiation and integration to
arbitrary (non-integer) order (Monje et al., 2010; Das, 2012).
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2.2. Famous relation of fractional integral/differential

In order to achieve a fractional order of differentiation/integra-
tion operator we should effort to interpolate the operators be-
tween two integer order operations, so in the limit sense when
the order of operator approaches to integer, the differentiation/
integration operations inclines to classical integer operations.
There are three famous relations of fractional integral/differential,
in the next subsections these are briefly described.

2.2.1. Riemann–Liouville’s definition of fractional integral
Consider an anti-derivative or primitive of the function /(x),

D�1/(x), then:

D�1/ðxÞ ¼
Z x

0
/ðsÞds ð1Þ

The calculation of the second order integration can be simpli-
fied by interchanging the integration order (Fig. 1).

D�2/ðxÞ ¼
Z x

0

Z s2

0
/ðs1Þds1ds2 ¼

Z x

0

Z x

s1

/ðs1Þds2ds1

¼
Z x

0
/ðs1Þ

Z x

s1

ds2ds1 ¼
Z x

0
/ðsÞðx� sÞds ð2Þ

This method can be applied repeatedly then:

D�3/ðxÞ ¼ 1
2

Z x

0
ðx� sÞ2/ðsÞds ð3Þ

For nth order of integration:

D�n/ðxÞ ¼ 1
ðn� 1Þ!

Z x

0
ðx� sÞn�1/ðsÞds ð4Þ

The last equation, in which we can see that an iterated integral
may be expressed as a weighted single integral with a very simple
weighting function, is known as the Cauchy’s formula for iterated
or repeated integral. If we generalize Eq. (4) for the case of
a 2 R+, we obtain

D�a/ðxÞ ¼ 1
CðaÞ

Z x

0
ðx� sÞa�1/ðsÞds ð5Þ

Which is corresponds to the Riemann–Liouville’s definition for
the fractional order integral of order a 2 R+.

2.2.2. Riemann–Liouville’s definition of fractional differential
Riemann–Liouville definited the fractional differential as

follows:

Da/ðxÞ ¼ dm

dxm
1

Cðm� aÞ

Z x

0

/ðsÞ
ðx� sÞaþ1�m ds

" #

ðm� 1Þ 6 a < m

ð6Þ

where m is the integer and a is a positive real number. Eq. (6) is
known as the Left hand Riemann–Liouville method (RL-Left Hand).
The formulation of this definition is described below:

Select an integer m greater than fractional number a then

(i) Integrate the function (m � a) folds.
(ii) Differentiate the above result by m.

To illustrate steps of fractional differentiation in the Left hand
definition refer to Fig. 2 which shows the fractional differentiation
of 2.3 times in the Left Hand Definition (LHD) of RL.

2.2.3. Caputo’s definition of fractional differential
Caputo formulated the fractional differentials as follow:

Da/ðxÞ ¼ 1
Cðm� aÞ

Z x

0

d/ðsÞm
dsm

ðx� sÞaþ1�m ds
" #

¼ 1
Cðm� aÞ

Z x

0

/ðmÞðsÞ
ðx� sÞaþ1�m ds

ðm� 1Þ 6 a < m ð7Þ

where m is the integer and a is a positive real number. This formu-
lation is exactly opposite to LHD. So it is known as the right hand
definition (RHD), for RHD of fractional differentials first select an
integer m greater than fractional number then:

(i) Differentiate the function m times.
(ii) Integrate the above result (m � a) fold by RL integration

method. To illustrate steps of the fractional differentiation
in the right hand definition refer to Fig. 3 which shows the
fractional differentiation of 2.3 times in RHD.

2.2.4. Grünwald-Letnikov’s definition of fractional differential
The process of Grünwald-Letnikov definition is described

below:

/0ðxÞ ¼ lim
h!0

/ðxþ hÞ � /ðxÞ
h

ð8Þ

/00ðxÞ ¼ lim
h!0

/0ðxþ hÞ � /0ðxÞ
h

¼ lim
h1!0

lim
h2!0

/ðxþh1þh2Þ�/ðxþh1Þ
h2

� lim
h2!0

/ðxþh2Þ�/ðxÞ
h2

h1
ð9Þ

If h = h1 = h2 then:

/00ðxÞ ¼ lim
h!0

/ðxþ 2hÞ � 2/ðxþ hÞ þ /ðxÞ
h2 ð10Þ

Continuing for ‘‘n’’ times we will have:

Dn/ðxÞ ¼ lim
h!0

1
hn

Xn

m¼0

ð�1Þm
n

m

� �
/ðx�mhÞ ð11Þ

where n
m

� �
¼ n!

m!ðn�mÞ!

Fig. 1. Schematic of interchanging the integration order. Fig. 2. Fractional differentiation of 2.3 times in LHD.
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