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a b s t r a c t

This paper emphasizes on finding the solution for a stationary transport equation using the technique of
Haar wavelet Collocation Method (HWCM). Haar wavelet Collocation Method is efficient and powerful in
solving wide class of linear and nonlinear differential equations. Recently Haar wavelet transform has
gained the reputation of being a very effective tool for many practical applications. This paper intends
to provide the great utility of Haar wavelets to nuclear science problem. In the present paper, two-dimen-
sional Haar wavelets are applied for solution of the stationary Neutron Transport Equation in homoge-
neous isotropic medium. The proposed method is mathematically very simple, easy and fast. To
demonstrate about the efficiency of the method, one test problem is discussed. It can be observed from
the computational simulation that the numerical approximate solution is much closer to the exact
solution.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Wavelet Analysis is a new branch of mathematics and widely
applied in signal analysis, image processing and numerical analy-
sis, etc. (Chang and Piau, 2008; Chen et al., 2010). Among the dif-
ferent wavelet families mathematically most simple are the Haar
wavelets (Lepik, 2009). In 1910, Alfred Haar introduced the notion
of wavelets. Haar wavelets have the properties of orthogonal and
normalization having close support and the simple expression (Li
and Zhao, 2010; Saha Ray, 2012). Due to its simplicity, the Haar
wavelets are very efficient and effective tool for solving both differ-
ential and integral equations.

Integro-differential equations (IDEs) have many applications in
different fields of mechanical, nuclear engineering, chemistry,
astronomy, biology, economics, potential theory and electrostatics.
An exact solution of this integro-differential equation was found
only in the particular cases. In many cases analytical solution of
IDEs is unwieldy task; therefore our aim is focused on exploring
accurate and efficient numerical method (Islam et al., 2013).

The motivation of the present paper is to solve a typical problem
of the mathematical–physics: the solving a particle transport equa-
tion that has numerous applications in physics and astrophysics

(Martin, 2011). In the reactor, the neutrons are generated at the fis-
sion of the nucleus and they are named as rapid neutrons with an
average speed equals to 2 � 107 m/s. In the stationary state of the
reactor, the particles have the tendency to move from a region with
a large density to another with a small density which yields a uni-
form density. The main emphasis in the reactor theory is to find
the neutrons distribution in the reactor and hence its density which
is the solution of an integro-differential equation known as neutron
transport equation.

In this study, we consider a linear form of Boltzmann equation
with a source function of the form f(x, g) = A(g) cos pg + B(g) -
sin pg. To obtain the solution of this stationary transport equation,
we have applied Haar wavelet transform method. A numerical
example will lead us to the conclusion on the advantage of this
method.

2. Formulation of neutron transport equation model

Let us consider the integral–differential equation for the sta-
tionary case of transport theory (Martin, 2011)

g
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with the following boundary conditions:

/ð0;gÞ ¼ 0 if g > 0 and /ð1;gÞ ¼ 0 if g < 0 ð2:2Þ

where /(x, g) is the neutron density which migrate in a direction
which makes an angle a with the x-axis and g = cos a; f(x, g) is a
given radioactive source function.

Now, we split the Eq. (2.1) into two equations using the follow-
ing notations

/þ ¼ /ðx;gÞ if g > 0 and /� ¼ /ðx;gÞ if g < 0 ð2:3Þ

By denoting, g
0
= �g, we can obtain

Z 0

�1
/ðx;g0Þdg0 ¼

Z 1

0
/ðx;�gÞdg ¼

Z 1

0
/�dg

In view of Eq. (2.3), Eq. (2.1) can be written as

g
@/þ
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þ /þ ¼ 1
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0
ð/þ þ /�Þdg0 þ fþ for g > 0 ð2:4Þ

�g
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0
ð/þ þ /�Þdg0 þ f� for g < 0 ð2:5Þ

with the boundary conditions /+(0, g) = 0, /�(1, g) = 0.
Adding and subtracting the Eqs. (2.4) and (2.5) and then intro-

ducing the following notations, we obtain

u ¼ 1
2
ð/þ þ /�Þ; v ¼ 1

2
ð/þ � /�Þ; g ¼ 1

2
ðfþ þ f�Þ and

r ¼ 1
2
ðfþ � f�Þ ð2:6Þ

We also obtain the following system

g
@v
@x
þ u ¼

Z 1

0
udgþ g; ð2:7Þ

g
@u
@x
þ v ¼ r ð2:8Þ

along with the following boundary conditions

uþ v ¼ 0 for x ¼ 0;

u� v ¼ 0 for x ¼ 1: ð2:9Þ

Eliminating the value of v from Eqs. (2.7) and (2.8), we rewrite the
problem (2.7)–(2.9) in the following form

�g2 @
2u
@x2 þ u ¼

Z 1

0
udgþ g � g

@r
@x
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@u
@x

� �����
x¼1
¼ rð1;gÞ; ð2:11Þ

where g e [0, 1].

3. Haar wavelets

Haar functions have been used from 1910 when they were
introduced by the Hungarian mathematician Alfred Haar. Haar
wavelets are the simplest wavelets among various types of wave-
lets. They are step functions over the real line can take only three
values 0, 1 and �1. The method has been used for being its simpler,
fast and computationally attractive feature. The Haar functions are
the family of switched rectangular waveforms where amplitudes
can differ from one function to another function. Usually the Haar

wavelets are defined for the interval t e [0, 1) but in general case
t e [A, B], we divide the interval [A, B] into m equal subintervals;
each of width Dt = (B � A)/m. In this case, the orthogonal set of
Haar functions are defined in the interval [A, B] by (Saha Ray,
2012; Saha Ray and Patra, 2013)

h0ðtÞ ¼
1 t 2 ½A;B�;
0 elsewhere;

�

and hiðtÞ ¼
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�1; f2ðiÞ � t < f3ðiÞ
0; otherwise

8><
>: ð3:1Þ
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2j

� �
ðB� AÞ ¼ Aþ k� 1

2j

� �
mDt;
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� �
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� �
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� �
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i = 1, 2, . . ., m, m = 2J and J is, a positive integer, called the maximum
level of resolution. Here, j and k represent the integer decomposi-
tion of the index i. i.e. i = k + 2j � 1, 0 6 j < i and 1 6 k < 2j + 1.

4. Function approximation

Any function y(t) e L2([0, 1)) can be expanded in Haar series as

yðtÞ ¼ c0h0ðtÞ þ c1h1ðtÞ þ c2h2ðtÞ þ . . . ;

where cj ¼
Z1

0

yðtÞhjðtÞdt: ð4:1Þ

If y(t) is approximated as piecewise constant in each subinterval,
the sum in Eq. (4.1) may be terminated after m terms and conse-
quently we can write discrete version in the matrix form as

Y �
Xm�1

i¼0

cihiðtlÞ ¼ CT
mHm; ð4:2Þ

for collocation points tl ¼ Aþ ðl� 0:5ÞD t; l ¼ 1;2; . . . ;m ð4:3Þ

where Y and CT
m are the m-dimensional row vectors.

Here H is the Haar wavelet matrix of order m defined by
H = [h0, h1, . . ., hm�1]T, i.e.

H ¼

h0

h1

� � �
hm�1

2
6664

3
7775 ¼

h0;0 h0;1 � � � h0;m�1

h1;0 h1;1 � � � h1;m�1

� � �
hm�1;0 hm�1;1 � � � hm�1;m�1

2
6664

3
7775; ð4:4Þ

where h0, h1, . . ., hm�1 are the discrete form of the Haar wavelet
bases.

5. Operational matrix of the general order integration

The integration of the Hm(t) = [h0(t), h1(t), . . ., hm�1(t)]T can be
approximated by Chen and Hsiao (1997)Z t

0
HmðsÞds ffi QHmðtÞ; ð5:1Þ

where Q is called the Haar wavelet operational matrix of integration
which is a square matrix of m-dimension. To derive the Haar wave-
let operational matrix of the general order of integration, we recall
the fractional integral of order a(>0) which is defined by Podlubny
(1999)
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