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a b s t r a c t

This paper presents a new and innovative optimization technique utilizing combination of cellular auto-
mata (CA) and quasi-simulated annealing (QSA) as solver concerning conceptual design optimization
which is indeed a multi-objective optimization problem. Integrating CA and QSA into a unified optimizer
tool has a great potential for solving multi-objective optimization problems. Simulating neighborhood
effects while taking local information into account from CA and accepting transitions based on decreasing
of objective function and Boltzmann distribution from QSA as transition rule make this tool effective in
multi-objective optimization. Optimization of fuel plate safety design while taking into account major
goals of conceptual design such as improving reliability and life-time – which are the most significant
elements during shutdown – is a major multi-objective optimization problem. Due to hugeness of search
space in fuel plate optimization problem, finding optimum solution in classical methods requires a huge
amount of calculation and CPU time. The CA models, utilizing local information, require considerably less
computation. In this study, minimizing both mass and deformation of fuel plate of a multipurpose
research reactor (MPRR) are considered as objective functions. Results, speed, and qualification of pro-
posed method are comparable with those of genetic algorithm and neural network methods applied to
this problem before.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Optimization is a prominent problem in various branch of
science including nuclear engineering which is, in general, to find
optimum (minimum, in the present paper) values of a function
in a given domain, and to find the value of variables where the
optimum is reached in the domain. During a nuclear reactor de-
sign, many optimization problems arise from the necessity of
reaching high efficiency, availability and safety levels, under a lot
of design constraints. Whence, development and improvement of
optimization techniques in nuclear power plants have been of spe-
cial interest to people involved in such field (Arab-Alibeik and
Setayeshi, 2003, 2005; Fadaei and Setayeshi, 2008, 2009a,b; Fadaei
et al., 2010; Habibiyan et al., 2004; Sadighi et al., 2002a,b;
Zaferanlouei et al., 2010).

Multi-objective problems are commonly found in a nuclear
reactor design. They arise when in practice multiple criteria in reac-
tor designs are to be dealt with at the same time. In multi-objective

optimization one is interested in optimizing under the constraint
that several objectives must be taken care of, not only one such
as maximization or minimization of a specific fitness function. As
these objectives are usually incompatible, one is led to consider
tradeoffs in the way in which resources are allocated. Actually,
many real-world problems are of this kind.

The common approach for these problems is to seek a solution
that satisfies all objects acceptably. In fact the more common situ-
ation is where the problem itself is so complex that finding the best
possible solution could cost more than the benefit, so the optimiza-
tion models generally do not attempt to find the best possible solu-
tion, but instead seek for extremely good solutions within
reasonable cost and time.

A lot of different methods have been proposed dealing with
optimization problems each have some pros and cons. Not so far,
the use of linear-programming together with perturbation analysis
has been used as a popular optimization technique (Rozon and
Beaudet, 1992). More recently, due to the high complexity, nonlin-
earity, multi-modality and, principally, the lack of knowledge
about the search domain of most problems involved in nuclear
designs, the use of more robust and appropriate techniques such
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as cellular automata (CA) have been proposed (Fadaei and Setaye-
shi, 2009a,b). Regarding this subject, recently CA (Neumann et al.,
1966) has been developed in investigating complex systems
(Bar-Yam, 1997; Hoekstra et al., 2010; Murtaza et al., 2007). It
has been shown that CA forms a general class of models of dynam-
ical systems which are appealingly simple and yet capture a rich
variety of behavior. This has made them a favorite tool for studying
the generic behavior of and modeling complex dynamical systems.

Combination of CA and simulated annealing (Kirkpatrick et al.,
1983) was used successfully in a previously published paper
(Fadaei and Setayeshi, 2009a) in fuel loading pattern of VVER-
1000 NPP. After this successful combination, a quasi-simulated
annealing (QSA) scheme is put forward, which is based on the
frame of the CA and benefited from features of SA method.

Integrating CA and QSA is a powerful optimization technique
providing mechanisms which are intended to avoid convergence
to local optimum.

The obtained results have shown that the use of combination of
CA and QSA in such kind of problems enhances the quality of opti-
mization outcome, providing a better and more realistic support to
the nuclear engineer decision. Flexible and adaptable structure
with complex physical systems, reasonable calculation time, sim-
plicity in implementing, and ability to find good solutions near as
comparable with global minimum are the most privileges of this
method compare with former works.

A main problem in a research reactor design optimization is fuel
plate safety design optimization (Wahed and Ibrahim, 2010;
Wahed et al., 2008). Optimization of fuel plate safety design while
taking into account major goals of conceptual design such as
improving reliability and life-time – which are the most significant
elements during shutdown – is a major multi-objective optimiza-
tion problem. Due to hugeness of search space in fuel plate optimi-
zation problem, finding optimum solution in classical methods
requires a huge amount of calculation and CPU time. In a fuel plate
optimization task, not only mass of fuel plate but also deformation
of fuel plate should be kept minimum which make it classified as a
multi-objective problem with an extremely huge search space. In
this paper we develop a CA–QSA based optimization and apply it
to a multipurpose research reactor (MPRR) fuel plate design for a
safety shut down using MATLAB.

Following the introduction, Section 2 presents concept of CA
briefly. Section 3 describes SA. In Section 4, quasi-simulated anneal-
ing is introduced. Sections 5 and 6 are devoted to multi-objective
optimization problem and optimization algorithm by combining
CA and SA respectively. Discussion about implementation of optimi-
zation algorithm in fuel plate optimization problem is provided in
Section 7. A discussion about simulation results is presented in
Section 8. Finally, Section 9 summarizes the conclusion remarks.

2. Cellular automata

2.1. A brief history

The notion of cellular automata has a long, living history going
back to Ulam (1952) and Neumann et al. (1966). Von Neumann’s
cellular automaton (in plural cellular automata) represents a direct
predecessor of cellular automata (CAs). Shortly, von Neumann
introduced CA as a computational medium for machine self-repli-
cation motivated by a simple question: ‘‘What kind of logical orga-
nization is sufficient for an automaton to be able to reproduce
itself?’’. In other words ‘‘Can we reproduce computationally and
in silico what living cells do?’’.

Much of von Neumann’s work was completed and extended by
Burks (1970). A burst of CA activity occurred in the 1970s with the
introduction of John Conway’s game of ‘‘life’’ (Gardner, 1970). Life
was motivated as a simple model of an ecology containing 24 cells,

which live and die according to a few simple rules. This most famil-
iar example of a CA displays rich patterns of activity and is capable
of supporting many intricate structures.

2.2. The structure

CA can be described in several ways. The description, which is
perhaps most useful for physics, is to think of a CA as an entirely
discrete version of a physical field. Space, time, field variables,
and even the dynamical laws can be completely formulated in
terms of operations on a finite set of symbols. The points (or cells)
of the space consist of the vertices of a regular, finite-dimensional
lattice, which may extend to infinity, though in practice, periodic
boundary conditions are often assumed (Wolfram, 1986). Time
progresses in finite steps and is the same at all points in space.
Each point has dynamical state variables, which range over a finite
number of values. The time evolution of each variable is governed
by a local, deterministic dynamical law (usually called a rule): the
value of a cell at the next time step depends on the current state of
a finite number of ‘‘nearby’’ cells called the neighborhood. Finally,
the rule acts on all points simultaneously in parallel and is the
same throughout space for all times (Smith, 1994). Figs. 1 and 2
show 1d and 2d examples of CA, respectively.

2.3. Neighborhood concept

A cellular automata rule is local, by definition. The updating of a
given cell requires one to know only the state of the cells in its
vicinity. The spatial region in which a cell needs to search is called
the neighborhood. In principle, there is no restriction on the size of
the neighborhood, except that it is the same for all cells. However,
in practice, it is often made up of adjacent cells only.

For two-dimensional cellular automata, two neighborhoods are
often considered: the von Neumann neighborhood, which consists
of a central cell (the one which is to be updated) and its four
geographical neighbors north, west, south and east. The Moore
neighborhood contains, in addition, second nearest neighbors
north-east, north-west, south-east and south-west, that is a total
of nine cells. Fig. 3 illustrates these two standard neighborhoods.

2.4. Boundary conditions

In practice, when simulating a given cellular automata rule, one
cannot deal with an infinite lattice. The system must be finite and
have boundaries. Clearly, a site belonging to the lattice boundary
does not have the same neighborhood as other internal sites. In or-
der to define the behavior of these sites, the neighborhoods for the
sites at the boundary are extended. For instance, a very common
solution is to assume periodic (or cyclic) boundary conditions,
that is one supposes that the lattice is embedded in a torus-like
topology. In the case of a two-dimensional lattice, this means that
the left and right sides are connected, and so are the upper
and lower sides. Other possible types of boundary conditions are
illustrated in Fig. 4.

2.5. Deterministic approach

The concept of CA begins from the concept of space and the
locality of influence. We assume that the system we would like
to represent is distributed in space, and that nearby regions of
space have more to do with each other than regions far apart.
The idea that regions nearby have greater influence upon each
other is often associated with a limit (such as the speed of light)
to how fast information about what is happening in one place
can move to another place. Once we have a system spread out in
space, we mark off the space into cells. We then use a set of
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