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In this paper, a new hybrid method for solving fine-group eigenvalue transport problems is developed.
This method extends the subgroup decomposition method to efficiently couple a new coarse-group quasi
transport theory with a set of fixed-source transport decomposition sweeps to obtain the fine-group
transport solution. The advantages of the quasi transport theory are its high accuracy, straight-forward
implementation and numerical stability. The hybrid method is analyzed for a 1D benchmark problem
characteristic of boiling water reactors (BWR). It is shown that the method reproduces the fine-group
transport solution with high accuracy while increasing the computational efficiency up to 12 times
compared to direct fine-group transport calculations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, Douglass and Rahnema (Douglass and Rahnema,
2012a) developed a new subgroup decomposition method (SGD)
for treating the energy variable in the Boltzmann equation. This
work improved the consistent generalized energy condensation
theory (Douglass and Rahnema, 2012b) by extending the cross sec-
tion condensation process to preserve spectral accuracy in con-
densed-group transport calculations in a simpler and more direct
manner. That is, cross sections and the angular flux are no longer
expanded in energy. The SGD method directly couples a consistent
coarse-group criticality calculation with a set of fixed-source
decomposition sweeps to obtain the fine-group spectrum without
the need to solve for energy moments of the flux. The SGD method
was recently extended to diffusion theory (Yasseri and Rahnema,
2013a). The transport theory SGD (TSGD) and diffusion theory
SGD (DSGD) methods utilize coarse-group transport/diffusion cal-
culations and a set of transport/diffusion decomposition sweeps
to unfold the fine-group flux spectrum (solution). The key feature
of both SGD methods is the ability to correct for spectral (core
environment) effects resulting from energy condensation. Consis-
tent multi-group formulations (i.e., energy-angle coupling) and
on-the-fly cross section recondensation at the core level are the
main reasons that the SGD methods reproduce the fine-group solu-
tion independent of the coarse-group structure.
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Anistratov and Gol'din (2011) developed a multi-level method
in 1D slab geometries for solving multi-group eigenvalue transport
problems. In their work, a combination of effective one-group
low-order quasi-diffusion equation and multi-group low-order
equation are utilized to accelerate the multi-group k-eigenvalue
transport problems. In the multi-level approach, the multi-group
low order quasi-diffusion is used to accelerate the multi-group
transport in the first layer and an effective gray (one-group) low
order quasi-diffusion is utilized to accelerate the multi-group low
order equation in the second layer by evaluating the eigenvalue
and one-group flux. In this work, the accuracy of the eigenvalue
for the multi-level approach compared to multi-group transport
solution for different spatial and angular discretization is demon-
strated. However, no comparison of the flux spectrum and its accu-
racy using the multi-level approach is shown. In a different work
by Anistratov (2011), a nonlinear diffusion acceleration (NDA)
method is presented as a fast iterative algorithm for solving mul-
ti-group eigenvalue transport problems. This work demonstrates
that a one-group low order NDA consistent with eigenvalue trans-
port problems accelerates the multi-group low order NDA equa-
tions. It is shown that the eigenvalue and flux converge after a
few iterations. The paper does not discuss the speed up factor
nor the accuracy of the method. That is, it is not shown whether
the method reproduces the fine-group transport solution or not.

The TSGD method can also be viewed as an acceleration method
for solving heterogeneous fine-group eigenvalue transport
problems by using coarse-group transport calculation iteratively.
This will be demonstrated in this paper. Since decomposition
sweep (a step in the SGD method that globally unfolds the flux
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spectrum from the coarse-group flux) depends on the coarse-group
flux and eigenvalue, coarse-group diffusion is an efficient candi-
date for replacing the coarse-group transport calculation. However,
the standard coarse-group diffusion theory is not capable of
achieving transport accuracy especially in regions where flux
behavior is highly anisotropic such as high absorbing regions, near
boundaries and localized sources. Hence, a theory that is computa-
tionally as efficient as diffusion theory but as accurate as transport
theory is highly desirable. To this end, a new coarse-group “quasi
transport” theory is developed in this paper. The advantage of
the new method is that angular details are embedded in an addi-
tional cross section while retaining the standard form of the diffu-
sion coefficient. As a result, the quasi transport method can be
easily implemented into existing fine-mesh diffusion codes by
introducing only one additional term. In this paper, the SGD meth-
od is combined with the coarse-group quasi transport theory
resulting in a hybrid transport/quasi transport SGD (HSGD) meth-
od to further increase computational efficiency while maintaining
fine-group transport accuracy.

In Section 2.1, the new coarse-group quasi transport theory is
derived in general geometry and in Section 2.2 the HSGD method
is described with the quasi transport theory. The accuracy of the
hybrid method is investigated in a 1D BWR benchmark problem
in Section 3. Concluding remarks and future work are found in Sec-
tion 4. Spatial discretization schemes for the quasi transport theory
in 1D slab geometry are included in Appendix A.

2. Method
2.1. Quasi transport theory

For an eigenvalue problem, the fine-group transport angular
flux is governed by Eq. (1) in which G is the total number of fine
groups {g|g=1,2,3,...,G}.
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Standard notation (Douglass and Rahnema, 2012a) is used in Eq.
(1). The fission and scattering kernels are assumed isotropic and
linearly anisotropic, respectively. These assumptions are common
in lattice depletion and core analysis methods for thermal (water)
reactor systems.

Let C be the number of coarse groups where any fine-group h is
fully contained in coarse-group c. By integrating/summing over the
energy range contained in coarse-group c, the coarse-group trans-
port equation is obtained as shown in Eq. (2). The more general
form including arbitrary scattering kernel is found in Douglass
and Rahnema (2012a).
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where the coarse-group coefficients are defined in the following
equations:
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Taking the Oth and 1st angular moment of Eq. (2) will result in
Eqs. (10) and (11).
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In the above equations, the vector symbol for current, gradient
and current weighted cross sections has been explicitly expressed.
The double sided arrow («) indicates a tensor. For the ease of
implementation, Eq. (11) is modified as below to resemble the
standard coarse-group diffusion equation while maintaining high-
er order transport effects (beyond 1st order in angle).
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The new term in the above equation is defined as:
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Combining Eqs. (10)-(16) yield the following coarse-group
quasi transport equations.
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