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a b s t r a c t

The spectral element method can be used to deal with the spatial operators of neutron transport prob-
lems with high efficiency, as shown recently in the framework of the second-order AN transport approx-
imation. The results highlight interesting computational features and show the appeal of the scheme for
reactor physics applications. In this paper we investigate the numerical performance of the method in
detail. In order to carry out an accurate monitoring of the error behavior to levels close to numerical
round-off, we use benchmark problems with known analytical solutions, or with manufactured solutions.
Manufactured solutions can easily be obtained for source-injected problems, by tailoring the external
neutron source and the boundary conditions to a pre-established analytical solution for a given system.
The results presented prove the effectiveness of the method and the high level of accuracy that can be
attained.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In a previous paper (Barbarino et al., 2013) the spectral element
method (SEM) was applied to the solution of neutron transport
problems in the AN space second-order formulation, which is par-
ticularly suitable to be treated by SEM. The results presented
showed that accurate solutions can be attained for some bench-
mark configurations and interesting features were highlighted.
Hence, the method looks promising for applications to neutronic
calculations in nuclear systems.

In this paper, the numerical performance of the method is
investigated in detail. In order to carry out an accurate monitoring
of the behavior of the error up to levels close to numerical round-
off, it is necessary to have an exact reference solution. Exact bench-
marks are available either through fully analytical solutions
(Ganapol, 2008) or through a manufactured solution process. Man-
ufactured solutions can be easily obtained for source-injected neu-
tron transport problems, by tailoring the external neutron source
and the boundary conditions to a pre-established analytical
neutron distribution in a given system (Warsa et al., 2010). In
the present work, manufactured and analytical solutions are de-
rived and the performance of SEM is assessed by direct compari-
sons and error studies.

While in the previous work the SEM approach was applied to
two-dimensional configurations with the AN model, in this work
we focus the attention on the comparison of the performance of
the method also when applied to standard approximations, such
as spherical harmonics and discrete ordinate formulations of the
transport problem. This allows a more consistent evaluation of
the error, eliminating differences associated to the angular treat-
ment adopted and focusing on the error introduced by the spatial
discretization schemes only. For this purpose, we consider the one-
speed transport equation in plane geometry with isotropic scatter-
ing and a general anisotropic source:

l @wðx;lÞ
@x

þ RtðxÞwðx;lÞ ¼
RsðxÞ

2

Z þ1

�1
dl0wðx;l0Þ þ Sðx;lÞ; ð1Þ

with ðx;lÞ 2 D :¼ ða; bÞ � ½�1;þ1�. The unknown w(x,l) is the neu-
tron angular flux and S(x,l) is a prescribed anisotropic neutron
source. In what follows, the cross sections Rs(x) and Rt(x) are as-
sumed to be piecewise constant functions. Eq. (1) must be supple-
mented with boundary conditions. Vacuum conditions are
assumed at the boundaries of the spatial domain:

wða;lÞ ¼ 0; 8l 2 ½0;1�; wðb;lÞ ¼ 0; 8l 2 ½�1;0�: ð2Þ

Discrete ordinate and spherical harmonics equations are then de-
rived for Eq. (1), in a form suitable to be handled by SEM.

Furthermore, using the exact Green function for the transport
equation in the infinite homogeneous medium, analytical refer-
ence solutions may also be generated. Such solutions are used as
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benchmarks by direct comparison with the results of the applica-
tion of the spectral element method.

2. The spectral element method applied to the second-order
form of the transport equation

The even and odd parity fluxes, denoted by w+(x,l) and w�(x,l),
respectively, are introduced as:

w�ðx;lÞ ¼ 1
2

wðx;lÞ � wðx;�lÞ½ �; ð3Þ

while the total flux is given by:

/ðxÞ ¼ 2
Z þ1

0
dlwþðx;lÞ: ð4Þ

Using the standard procedure (Lewis and Miller, 1993), by writing
Eq. (1) for l and �l, adding and subtracting the resulting equations
and eliminating the odd parity flux, one obtains a second-order
form of the equation for w+(x,l):

�l2 @

@x
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with

Qðx;lÞ ¼ Sþðx;lÞ � l
RtðxÞ

@S�

@x
ðx;lÞ; ð6Þ

where the even and odd parity sources, S+ and S�, are defined as in
Eq. (3). Assuming that no emission from the external source is tak-
ing place on the boundary, i.e. S(a,l) = S(b,l) = 0, one can easily
show using Eq. (3) that the vacuum boundary conditions for
w+(x,l) take the following Robin-type form:

l @w
þ

@x
ða;lÞ � RtðaÞwþða;lÞ ¼ 0; 8l 2 ½0;1�;

l @w
þ

@x
ðb;lÞ þ RtðbÞwþðb;lÞ ¼ 0; 8l 2 ½�1;0�:

ð7Þ

Eqs. (5)–(7) constitute the basic formulation of the transport
problem.

The angular treatment can be dealt with adopting the spherical
harmonics approach, that amounts to an expansion in terms of
Legendre polynomials in plane geometry, thus leading to a set of
coupled equations for the even moments of the flux. The develop-
ment of a spectral element approach to the spherical harmonics
equations has been carried out in full detail by Mund (2011).
Alternatively, the discrete ordinate method can be applied by dis-
cretization of the angular variable coupled to the Gauss–Legendre
quadrature scheme over the half range l 2 [0,1]. In the following,
the discrete ordinate spectral element formulation is derived. The
spatial domain is supposed to be made of subdomains in which
nuclear data are constant.

2.1. The discrete ordinate model

A discrete ordinate model can be derived easily from the sec-
ond-order transport equation, Eq. (5) with boundary conditions
given by Eq. (7), assuming piecewise constant cross sections. For
brevity, it is useful to set the following definitions:

u‘ðxÞ :¼ wþðx;l‘Þ and Q ‘ðxÞ :¼ Qðx;l‘Þ: ð8Þ

Choosing a set of N symmetric angular directions fl‘g
N
‘¼1, one can

write Eq. (5) for each direction l‘ > 0, obtaining the following
system of coupled differential equations for each homogeneous
subdomain:

�l2
‘

Rt

d2u‘ðxÞ
dx2 þ Rtu‘ðxÞ ¼

Rs

2
/ðxÞ þ Q ‘ðxÞ; ‘ ¼ 1; . . . ;N=2: ð9Þ

Recalling Eq. (7), at the boundary points a and b one can write:

l‘

du‘

dx
ðaÞ � RtðaÞu‘ðaÞ ¼ 0;

l‘

du‘

dx
ðbÞ þ RtðbÞu‘ðbÞ ¼ 0; ‘ ¼ 1; . . . ;N=2:

ð10Þ

Interface conditions need also to be imposed at points x@ be-
tween two different homogeneous subdomains:

u‘ðx�o Þ ¼ u‘ðxþo Þ
1

Rtðx�o Þ
du‘ðx�o Þ

dx
¼ 1

Rtðxþo Þ
du‘ðxþo Þ

dx
; ‘ ¼ 1; . . . ;N=2:

ð11Þ

If the directions are chosen as the nodes of a suitable quadra-
ture formula, the scalar flux can be written as:

/ðxÞ :¼ 2
XN=2

‘¼1

w‘u‘ðxÞ; ð12Þ

where fw‘gN
‘¼1 is the set of quadrature weights. Note that, for the

even parity approach, we need to use only half of the nodes and
weights of a quadrature set to evaluate the total flux, since
w+(x,l) = w+(x,�l).

Using a compact matrix notation, the set of N/2 ordinary differ-
ential equations given in Eq. (9) and the two boundary conditions
given in Eq. (10) become for each homogeneous subdomain:

� 1
Rt

D
d2u
dx2 þ RtuðxÞ ¼ RsWuðxÞ þ Q ðxÞ; ð13Þ

and

D1=2 du
dx
ðaÞ � RtðaÞuðaÞ ¼ 0; ð14Þ

D1=2 du
dx
ðbÞ þ RtðbÞuðbÞ ¼ 0; ð15Þ

with u(x):¼{u1(x), . . . , uN/2}T and Q(x):¼{Q1(x), . . . , QN/2(x)}T. The
(N/2) � (N/2) diagonal matrix D has the non-zero elements equal
to l2

‘ , while W contains N/2 identical rows with one Gaussian quad-
rature weight w‘ per column. Matrix D1/2 is clearly diagonal with
non-zero elements equal to l‘. As for the spherical harmonics equa-
tions, the transport model is thus reduced again to a set of coupled
second-order differential equations.

2.2. Spectral elements applied to the discrete ordinate equations

The spectral element approach can be applied along the same
line established previously (Barbarino et al., 2013). Let h(x) 2 (H1(-
a,b))N/2 denote any suitable N/2-dimensional test vector. We take
the inner product of Eq. (13) by h(x) which, after integration by
parts and application of the boundary conditions, Eq. (10), yields:
Z b

a
dx

1
RtðxÞ

D
du
dx

� �
� dh

dx
þ RtðxÞuðxÞ � hðxÞ

� �
þ D1=2uðaÞ � hðaÞ

þ D1=2uðbÞ � hðbÞ ¼
Z b

a
dx RsðxÞðWuðxÞÞ � hðxÞ þ Q ðxÞ � hðxÞ½ �:

ð16Þ

Then we partition the space domain Dx into E adjacent elements De
x

(e = 1, . . . , E) and inside each element we select a Gauss–Lobatto–
Legendre (GLL) quadrature grid ve

k with its associated Lagrange
interpolation polynomials of degree (K + 1). By this process we build
a (EK + 1)-dimensional subspace of H1(a,b), say VEK+1. For each ele-
ment e, the even parity unknown fluxes can be written as:
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