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a b s t r a c t

Cell centered (LAPc) and cell edge (LAPe) algorithms were developed to solve the static neutron diffusion
equation in 2D Cartesian geometry using Lagrange interpolation with the progressive polynomial approx-
imation. Two benchmark problems were used to test the algorithms: the two-group TWIGL problem and
a one-group IAEA benchmark problem. The LAP algorithms showed to be more accurate than a finite
difference method (FDM) and for about the same level of accuracy, the LAP numerical methods have
an efficiency advantage because they have to solve for less number of unknowns. The LAP algorithms
showed more sensitivity to the mesh size than what QUANDRY results showed. Even though the FDMs
algorithm, for the calculation of keff, showed systematically to be less accurate than QUANDRY, LAPc,
and that LAPe, it was the only one that did not produce negative flux in any location for all the mesh
structures analyzed in the IAEA problem. Other variants of the Lagrange interpolation polynomial did
not show systematically good reliability and/or accuracy.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Even with the current computation speeds, the search for more
efficient algorithms to solve realistic nuclear reactor problems is
needed. Because the finite difference method (FDM), one of the
first approach used in solving large nuclear reactor problems, re-
quires a very large number of mesh points to accurately model
many two and three dimensional problems other numerical meth-
ods have been developed to overcome this difficulty, among them,
the analytic nodal method has been implemented with significant
better accuracy and efficiency than the low order FDM. In this work
numerical algorithms are developed as an effort in this important
search.

A brief description of the numerical methods used in QUANDRY
(based on an Analytic Nodal Method) and in FDMs (based on a
Finite Difference Method) which will be used for comparison, is
presented next without the details of the equations to be used.

The Analytic Nodal Method (ANM) used in QUANDRY, as
described in (Smith, 1979), is based on the integration of the
SND equation over an arbitrary volume (a node with spatially
homogenized cross sections) inside the reactor. In this way an
exact neutron balance equation is obtained with two unknowns:
the face-averaged current and the node-averaged flux, so to be able
to solve the problem and still be within the neutron diffusion the-
ory, a relationship between those unknowns has to be established.

In QUANDRY that relationship is obtained by integrating the SND
equation over the directions transverse to the direction of interest.
In doing that a spatially dependent-transverse leakage source term
appears in the resulting one-dimensional SND equation. The
assumption (a quadratic shape) made to determine that source
term is the only approximation of the ANM apart from the assump-
tion of homogenized nodes. For a two-dimensional problem
QUANDRY needs to solve for 3N (N is the number of spatial nodes)
unknowns per group: N averaged-nodal fluxes, N surface-averaged
net leakages in x direction and N surface-averaged net leakages in y
direction. The resulting system of algebraic equations is trans-
formed in such a way that more spatial coupling is present in the
node-average flux terms, then, it is solved iteratively using outer/
inner iteration schemes. To accelerate the convergence rate of
the outer iterations the eigenvalue shift method is used. For the
inner iterations, a modified block Gauss–Seidel iteration is
performed. At each inner iteration the flux coefficient matrix is
inverted using the Cyclic Chebyshev Semi-Iterative method (a var-
iant of the block successive over-relaxation method). It was shown
that the ANM is guaranteed to give the exact solution of the two-
group SND equations in the limit of infinitesimal small spatial
mesh. The algebraic complexity in determining the leakage term
limits the ANM to two energy groups (Lawrence, 1986).

The finite difference method used in the FDMs code is based on
the integration of the SND equation over an arbitrary area (node
with spatially homogenized cross sections) determined by the par-
titions made on the x and y axis. In doing that the second order
derivatives (leakage terms) are reduced to a first order which are
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approximated with a finite difference in terms of the fluxes at two
consecutive points. The terms representing the neutron current are
eliminated by applying continuity of it at the interface between
two consecutive regions (unlike the ANM where the neutron cur-
rent is left as an unknown). The integral of the terms containing
the flux is approximated by assuming a constant flux inside the
integration domain. The code uses an edge-centered algorithm so
the unknowns are the fluxes at the corner of the cells and the
number of unknowns per group is smaller than N (the number of
cells/nodes). The neutron flux and the eigenvalue are determined
using the successive method (Duderstadt and Hamilton, 1976),
one group at a time successively. The resulting system of algebraic
linear equations for each group was solved with the Gauss elimina-
tion method (unlike the ANM that uses iterative procedures).
Because the values of the cross sections at the common point of
4 adjacent cells are used, an area-weighted average is to be done.
It is well established that the finite difference method gives the
exact solution of the multi-group SND equation in the limit of
infinitesimal small spatial mesh.

Table 1 shows published results of keff calculation for the TWIGL
benchmark problem for QUANDRY (Smith, 1979), along with the
results of TWIGL (Yasinski et al., 1968), POW (Pollard, 1977), and
FDMs (Quintero-Leyva, 2012, full core) codes. Notice that the keff

value of QUANDRY (quarter core result) is not very close to the rest
for the same mesh size, but it is more accurate as the trend of FDMs
indicates. From that table can be seen that for about the same level
of accuracy FDMs has to solve for 6241 unknowns per group, while
QUANDRY has to solve for only 1200 (per group for a full core) for a
ratio of about 5 in favor QUANDRY’s efficiency. On the other hand,
for the same mesh size the ratio is about 3 in favor of FMDs effi-
ciency but it is accompanied with the lower accuracy.

That observation, and a hope of finding an approximation to the
connection between average neutron flux on each side of a surface
and the surface-average net neutron current, could be to some ex-
tent equivalent to finding a reliable flux distribution in the region
of interest, inspired this work. Therefore, algorithms that do not
give the neutron currents (main reason for the indicated ratio of
3) as unknowns (but provide a better level of accuracy than that
of the common finite difference method) were developed.

There are many methods in the literature, apart from the FDM,
that have only the neutron flux as unknown: flux synthesis (Larsen,
1971), Wachspress et al. (1972) referenced in (Christensen, 1985),
flux expansion (Langenbush et al., 1977a, 1977b) referenced in
(Sutton and Aviles, 1996), finite elements using Lagrange polyno-
mials referenced in (Christensen, 1985) or using basic polynomial
interpolation equations (Kaper et al., 1972), etc. In this work, a
2D-Lagrange interpolation with the unknown flux as the coeffi-
cients of the interpolation equation, and without applying any var-
iational principle, is used to solve the static neutron diffusion
(SND) equations.

The method used in the LAP codes (cell centered or edge cen-
tered) is based on integrating the SND equations in a way similar
to the FDMs’ one but instead of using the finite difference to
approximate the derivative, it is obtained by taking the analytic
derivative of the bivariate Lagrange interpolation polynomial

equations representing the neutron flux across 4 or more cells.
The integral of the terms containing the flux is obtained by analyt-
ically integrating the Lagrange polynomial. The neutron flux and
the eigenvalue are determined using the same approach used in
FDMs. Lagrange polynomial greater than second degree (in the
independent variable in question: x or y) can be used by adapting
the progressive polynomial approximation developed in
(Quintero-Leyva, 2009) for point kinetics to the current diffusion
problem. This is done by progressively increasing the degree of
the polynomial when going away from the external borders and
progressively decreasing it when approaching the external bound-
aries of the reactor. For the edge-centered algorithm (as in FDMs)
the number of unknowns per group is smaller than N (the number
of cells/nodes) and for the cell-centered algorithm it is N.

2. Numerical solution of the SND equation in 2D-Cartesian
geometry

The neutron diffusion differential equation for steady state can
be written as (Duderstadt and Hamilton, 1976):
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R,g is the neutron macroscopic removal cross section
(absorption and out scatters plus, if considered, the leakage through
the non-modeled dimensions).

The rest of the terms are well described in the literature. The
independent variables were dropped for convenience when
possible.

For two dimensions in Cartesian geometry the above equation
becomes:
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Integrating Eq. (1) between xi�1/2 and xi+1/2 in x direction, and be-
tween yj�1/2 and yj+1/2 in y direction, applying continuity of current
and flux, considering an average value of the nuclear constants in-
side each rectangular cell, and assuming a neutron flux distribution
represented by a Lagrange interpolation as
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the following system of algebraic linear equations (SALE) is
obtained for cell Edge and cell Centered algorithms:
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where, /gi+l,,j+m: Discrete values of the neutron flux at the points of
interest (the unknowns)
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Table 1
Reported keff calculation for the 2D-TWIGL benchmark problem.

Code Keff Mesh size Unknowns

TWGL 0.914193 8.0
POW 0.914194 8.0
QUANDRY 0.91321 8.0 1200
FDMs 0.9141935 8.0 361

0.9136486 4.0 1521
0.9133551 2.0 6241
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