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a b s t r a c t

One-dimensional spheres are perturbed to ellipsoids, and perturbation theory for inhomogeneous trans-
port problems is applied to estimate the leakage of an uncollided decay gamma ray, a neutron thermal
capture gamma ray, and a neutron inelastic scatter gamma ray. Only the shielding is perturbed, not
the source. The surface transformation function for the sphere-to-ellipsoid change-of-shape perturbation
is derived. Schwinger, Roussopolos, and combined perturbation estimates are applied. The perturbation
estimates are defined to estimate the total (4p) flux at an external spherical surface detector, and they
were accurate for point-detector fluxes when the leakage estimated from a point detector was similar
to the total external surface flux. For uncollided line fluxes, the Schwinger estimate worked very well
when the response of interest was the total external surface flux, but perturbation theory did not work
well when the response of interest was the flux measured at a single external point (unless extra care was
taken to account for geometric effects). For thermal capture line fluxes, the Roussopolos estimate was
extremely accurate for one point detector location but its accuracy depended on the detector location.
For inelastic scatter line fluxes, the detector fluxes were relatively insensitive to the detector location
and the perturbation estimates were fairly accurate.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Because of the speed, low memory requirement, and overall
simplicity of one-dimensional calculations, it is often desirable to
solve radiation transport problems in one-dimensional spherical
geometries even if the actual object being modeled is not spherical.
Recently, we proposed treating nonspherical geometries as pertur-
bations of spherical geometries using surface perturbation theory
for the inhomogenous Boltzmann transport equation (Favorite,
2013). In test problems involving uncollided decay gamma rays
and neutron-induced gamma rays, spherical shields were per-
turbed to nonspherical shields: a radial expansion or contraction
within a 45-degree cone and a more extreme change of shape to
a cube. The response of interest was the gamma-ray flux measured
at an external detector.

In this paper, we apply perturbation theory to the change of
shape from a sphere to an ellipsoid. As in Favorite (2013), the sur-
face perturbation methods developed by Rahnema (1984, 1996)
are applied with the Schwinger (Bell and Glasstone, 1970; Stacey,
1974, 2001) and Roussopolos (Stacey, 1974, 2001) variational func-
tionals. The unperturbed test problem geometry and materials are
the same as those used in Favorite (2013). As in Favorite (2013),
only the shielding is perturbed, not the source, and we present re-
sults involving uncollided photons as well as coupled neutron-
gamma-ray fields with scattering.

As in Favorite (2013), the calculations were done with a one-
dimensional ray-tracing code (Favorite et al., 2009), with the con-
tinuous-angle Monte Carlo code MCNP6 (Pelowitz, 2013), with
MCNP6 modified with a special-purpose uncollided flux patch
(Favorite, 2012), and with the multigroup discrete ordinates code
PARTISN (Alcouffe et al., 2008).

The next section of this paper presents only enough background
material to establish the notation. Section 3 briefly discusses the
geometries, materials, and methods that were used in the calcula-
tions. Details missing from Section 2 and 3 may be found in
Favorite (2013). Section 4 presents the results for the sphere-
to-ellipsoid transformation, including the derivation of the surface
transformation function. Section 5 is a summary.

2. Perturbation theory

Consider a system that includes some volumetric source of neu-
tral particles surrounded by some shield. Both the source and the
shield may be multilayered but, for simplicity, only homogeneous
layers are considered. The Boltzmann transport equation, rendered
in operator notation as

Lw ¼ q; ð1Þ

can be solved for this system to give wð~r; E; bXÞ, the angular flux of
particles of energy E, position ~r, and direction bX. In Eq. (1), L is
the transport operator and q is the particle source density. Suppose
a set of D measurements is taken at a detector or set of detectors.
These may be, for example, peaks in a gamma-ray spectrum from
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which the flux or leakage of gamma-ray lines is obtained. The quan-
tities of interest are

Md ¼ hRdwi; d ¼ 1; . . . ;D; ð2Þ

where the detector response function Rdð~r; E; bXÞ is defined as zero
outside the detector volume, angle, and energy region of interest
to detector d. A weight function or energy- or angle-dependent
detector efficiency can be built into Rdð~r; E; bXÞ. In this paper, as in
Favorite (2013), Md will be either the flux integrated over a spheri-
cal 4p detector located a distance rd,4p from the origin or the flux at
a point~rd multiplied by the surface area of an assumed spherical 4p
detector intersecting~rd. The equation for the adjoint flux w�ð~r; E; bXÞ,
again in operator notation, is

L�w� ¼ Rd: ð3Þ

Now suppose the system is perturbed in some way. If the detec-
tor and the external boundaries and boundary conditions are not
perturbed, the exact value of the perturbed response of interest
for detector d is

M0
d ¼ hRdw

0i ¼ hRdðwþ DwÞi ð4Þ

where a prime indicates a perturbed quantity and a D indicates the
perturbation.

A variational functional for M0
d is the Schwinger functional (Bell

and Glasstone, 1970; Stacey, 1974, 2001), which can be written as
(Favorite, 2006, 2007)

Md;S½w�;w� ¼ hRdwi
hw�qi þ hw�Dqi
hw�qi þ hw�DLwi : ð5Þ

Another variational functional for M0
d is the Roussopolos func-

tional (Stacey, 1974, 2001), which can be written as (Favorite,
2006, 2007)

Md;R½w�;w� ¼ hRdwi � hw�ðDLw� DqÞi: ð6Þ

A combined Schwinger–Roussopolos functional for M0
d was pre-

sented in Favorite (2006) and written as

Md;C ½f ;w�;w� ¼ hRdwi
hw�qiþhf w�Dqi
hw�qiþhf w�DLwi�hð1� f Þw�ðDLw�DqÞi; ð7Þ

where f is a factor to be determined. Using f = 0 yields the Roussop-
olos functional, f = 1 yields the Schwinger functional, and 0 < f < 1
yields some combination. In spherical problems when the source
was not perturbed, f ¼ 1=

ffiffiffi
2
p

yielded excellent results for the uncol-
lided decay gamma-ray leakage (Favorite, 2006, 2013).

The inner products of perturbed quantities in Eqs. (5)–(7) con-
tain volume integrals that are nonzero only in the region between
the unperturbed and the perturbed interfaces. As in Favorite
(2013), we apply the ‘‘surface-layer formula’’ (Rahnema, 1996)Z

DV
dVð�Þ �

Z
SðVÞ

dSXð�Þ; ð8Þ

where DV is the perturbed volume, S(V) is the boundary of the
unperturbed volume (i.e., the unperturbed surface), and X is the sur-
face transformation function, or the distance between the perturbed
and unperturbed surfaces in the direction of the outward normal of
the unperturbed surface. To be specific, the inner products in ques-
tion become

hw�DLwi ¼
R

DV dV
R

4p d bX R10 dEw�ð~r; E; bXÞ½DLð~r; E; bXÞwð~r; E; bXÞ�
�
R

S0
dSXð~rnÞ

R
4p d bX R10 dEw�ð~rn; E; bXÞ½DLð~rn; E; bXÞwð~rn; E; bXÞ� ð9Þ

and

hw�Dqi ¼
R

DV dV
R

4p d bX R10 dEw�ð~r; E; bXÞDqð~r; E; bXÞ
�
R

S0
dSXð~rnÞ

R
4p d bX R10 dEw�ð~rn; E; bXÞDqð~rn; E; bXÞ; ð10Þ

where ~rn represents the points on the unperturbed surface S0 and
DA(~rn) means the value of A on the negative side of surface S0 minus
the value on the positive side.

Because the unperturbed geometries in this paper are one-
dimensional spheres, the angle and energy integrals of the fluxes
in Eqs. (9) and (10) are constants that may be removed from the
surface integral. Eqs. (9) and (10) become

hw�DLwi �
R

S0
dSXð~rnÞ
4pr2

n
ð4pr2

nÞ
Z

4p
d bX Z 1

0
dEw�ð~rn; E; bXÞ DLð~rn ; E; bXÞwð~rn; E; bXÞh i� �

ð11Þ

and

hw�Dqi �
R

S0
dSXð~rnÞ
4pr2

n
ð4pr2

nÞ
Z

4p
d bX Z 1

0
dEw�ð~rn; E; bXÞDqð~rn; E; bXÞ� �

;

ð12Þ

where rn ¼ k~rnk. The area of the unperturbed surface, 4pr2
n , appears

because the quantity in braces in Eq. (11) was computed in Favorite
(2013). In this paper, as in Favorite (2013), there are no source per-
turbations, so Eqs. (10) and (12) are not used.

For more details, see Favorite (2013).

3. Geometry, materials, and methods

The computational test objects used three materials: high-en-
riched uranium (HEU), stainless steel (SS) 304, and a material con-
taining carbon, hydrogen, nitrogen, and oxygen (CHNO). The
density and composition of these materials are given in Table 1.
For the HEU density and composition given in Table 1, the source
rate q of the 766-keV line from decay of 238U is 38.09993 c/cm3 s
(Gunnick and Tinney, 1971). The macroscopic photon cross sec-
tions Rt for the HEU and SS at 766 keV are given in Table 2 (White,
2003). These cross sections do not include coherent scattering. Two
of the neutron-induced gamma-ray lines produced in the CHNO
material are shown with their production mechanisms in Table 3.

The problem with uncollided decay photons used an initial,
unperturbed geometry having a 10-kg sphere of HEU (radius of
5.03169067346416 cm) for the source. It had the source encased
tightly (no gaps) in a shell of SS with an outer radius of 7 cm. In this
paper, the outer surface of the SS is perturbed to an ellipsoid. Only
the 766-keV uranium line was used. The uncollided line flux ‘‘mea-
sured’’ at an external detector located at point ~rd was computed
using a one-dimensional spherical ray-tracing code (Favorite

Table 1
Material specifications.

Material Density (g/cm3) Isotope Wgt. fraction

HEU 18.74 235U 0.9473
238U 0.0527

SS 304 7.86 50Cr 0.008278
52Cr 0.159452
53Cr 0.018078
54Cr 0.004491
55Mn 0.020000
54Fe 0.040944
56Fe 0.642158
57Fe 0.014838
58Fe 0.001960
58Ni 0.061136
60Ni 0.023546
61Ni 0.001024
62Ni 0.003260
64Ni 0.000835

CHNO 1.678 C-nat. 0.3112
1H 0.0279
14N 0.2934
16O 0.3675
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