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a b s t r a c t

The calculation of the effective delayed neutron fraction, beff , with Monte Carlo codes is a complex task
due to the requirement of properly considering the adjoint weighting of delayed neutrons. Nevertheless,
several techniques have been proposed to circumvent this difficulty and obtain accurate Monte Carlo
results for beff without the need of explicitly determining the adjoint flux. In this paper, we make a review
of some of these techniques; namely we have analyzed two variants of what we call the k-eigenvalue
technique and other techniques based on different interpretations of the physical meaning of the adjoint
weighting. To test the validity of all these techniques we have implemented them with the MCNPX code
and we have benchmarked them against a range of critical and subcritical systems for which either
experimental or deterministic values of beff are available. Furthermore, several nuclear data libraries have
been used in order to assess the impact of the uncertainty in nuclear data in the calculated value of beff .

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

The effective delayed neutron fraction beff is a crucial parameter
in reactor safety since it corresponds to the maximum reactivity
that can be inserted in a critical system without becoming
prompt-critical. This parameter is also fundamental to describe
the kinetic and dynamic response of both critical and subcritical
nuclear systems to internal or external perturbations.

Calculation methodologies for beff must take into account that it
is an adjoint-weighted parameter. Since the calculation of adjoint

fluxes with Monte Carlo codes is cumbersome, beff is usually calcu-
lated with deterministic codes. Nevertheless, its calculation with
Monte Carlo codes is also desirable since they allow dealing with
more complex geometries, different materials and continuous en-
ergy cross sections. The need of accurate calculation tools for beff

is specially relevant in the case of ADS that cannot become critical,
since the experimental determination of beff is usually very difficult
in a subcritical state.

For this reason, a large number of publications have appeared
over the last years considering different techniques for the calcula-
tion of beff with Monte Carlo codes. Trying to group them, we have
classified them into two categories. The first one comprises
techniques based on k-eigenvalue calculations; the second one
comprises techniques based on different interpretations of the
adjoint weighting, such as those based on interpreting the adjoint
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weighting as the next fission probability or the iterated fission
probability. In addition, a third category of techniques can be con-
sidered to include those based on perturbative methods, such as
these derived in Nagaya and Mori (2005, 2011), but we have not
considered them in this paper.

In the first of these categories, techniques based on k-eigen-
value calculations, we include techniques based on the definition
and calculation of certain parameters by analogy to the effective
multiplication constant (keff ), such as those of Bretscher (1997)
and Spriggs (2001). Techniques based on the interpretation of the
next-fission probability as the adjoint weighting have been ana-
lyzed by Nauchi and Kameyana (2005), Meulekamp and Van der
Marck (2006) and Nagaya (2010). Techniques based on the inter-
pretation of the iterated fission probability as the adjoint weight-
ing can be seen as an improvement of the previous ones, and
they have been proposed by Nauchi and Kameyana (2010), Raskach
et al. (2010), Chiba (2011) and Irwanto et al. (2010). In Section 2 we
will provide some discussion on the derivation and the physical
meaning of all these techniques.

In Sections 3 and 4 we will present the results of the application
of the above mentioned techniques against a number of critical and
subcritical benchmark systems, that we consider to be representa-
tive of a wide range of nuclear systems. For this we have used the
Monte Carlo code MCNPX2 (Pelowitz et al., 2006) with three differ-
ent nuclear data libraries (ENDF/B-VII.0, JEFF-3.1 and JENDL-3.3). The
use of several nuclear data libraries allows us to set a lower limit to
the uncertainty on beff estimators, due to both the accuracy of the
different techniques and the uncertainties of the basic nuclear data.

2. Calculation methodologies

The usual definition of beff is:

beff ¼
Uyk; F̂dUk

� �

Uyk; F̂Uk

� � ð1Þ

where F̂ is the creation operator, that takes into account all neu-
trons (prompt and delayed) created in the phase space by fission,
and F̂d is the delayed neutron creation operator, that takes into ac-
count only delayed neutrons. The brackets indicate integration over
the whole phase space. More specifically, the expressions in the
numerator and in the denominator of Eq. (1) can be expanded as:

Uyk; F̂dUk

� �
¼
Z

Uyk ~r; E;X
!� �

Rf ~r; E
0� �
md E0
� �

� vd E0;X
!
0 ! E;X

!
� �

Uk ~r; E0;X
!
0

� �
dE0dX

!
0dEd X

!
d~r ð2Þ

and

Uyk; F̂Uk

� �
¼
Z

Uyk ~r; E;X
!

� �
Rf ~r; E

0� �
m E0
� �

� v E0;X
!
0 ! E;X

!
� �

Uk ~r; E0;X
!
0

� �
dE0dX

!
0dEd X

!
d~r ð3Þ

m E0
� �

and md E0
� �

denote, respectively, the average number of total
(both prompt and delayed) and delayed neutrons at energy E0 pro-

duced per fission. v E0;X
!
0 ! E;X

!
� �

and vd E0;X
!
0 ! E;X

!
� �

represent,

respectively, the spectrum of energy and angular distribution

E;X
!

� �
of the total and delayed neutrons produced by an incoming

neutron with E0;X
!
0

� �
. Rf is the macroscopic fission cross section.

Finally, Uk and Uyk are respectively the k-mode direct and adjoint
neutron fluxes, that is, the fundamental mode solutions of the
eigenvalue equations:3

M̂Uk ¼
1

keff
F̂Uk ð4Þ

M̂yUyk ¼
1

keff
F̂yUyk ð5Þ

being M̂ the migration and losses operator, that takes into ac-
count the net number of neutrons leaving the phase space element
by capture, out-scattering or streaming, and F̂ is the creation oper-
ator, already defined. M̂y and F̂y are their corresponding adjoints.

In this work, we consider only ’’effective’’ the delayed neutron
fraction defined in Eq. (1) with the fluxes Uk and Uyk. Several other
delayed neutron fractions b can be defined considering fluxes other
than Uk or Uyk but they will not be the ‘‘effective’’ values anymore.
See, e.g., Bell and Glasstone (1970), Henry (1975) or Ott and Neu-
hold (1985) for further discussions on this topic. For instance, con-
sidering the adjoint flux to be constant over the whole phase space,
we can define a non-adjoint weighted delayed neutron fraction, b0,
that can be expressed as:

b0 ¼
F̂dUk

� �

F̂Uk

� � ð6Þ

The determination of b0 with Monte Carlo codes poses no major
difficulty and can be performed by simply counting the number of
total and delayed neutrons produced in fission processes. On the
contrary, the determination of adjoint-weighted parameters re-
quires the development of specific methodologies.

2.1. k-eigenvalue methods

Some of these methodologies can be classified as k-eigenvalue
methods because they are based in defining and solving eigenvalue
equations similar to (4) and (5). A first method is applied by Bret-
scher (1997) and it has been named the prompt method by Meulek-
amp and Van der Marck (2006) and the prompt k-ratio method by
Nagaya and Mori (2011). It is obtained by defining the following
eigenvalue equations:

M̂Up ¼
1
kp

F̂pUp ð7Þ

M̂yUyp ¼
1
kp

F̂ypU
y
p ð8Þ

where F̂p is the prompt neutron creation operator. Assuming that
Up ’ Uk, which in principle seems a good approximation since over
99% of the neutrons produced in fission are prompt neutrons, we
can obtain that:

beff ¼
Uyk; F̂dUk

� �

Uyk; F̂Uk

� � ¼ 1�
Uyk; F̂pUk

� �

Uyk; F̂Uk

� � ’ � Uyk; kpM̂Uk

� �

Uyk; keff M̂Uk

� �

¼ 1�
kp Uyk; M̂Uk

� �

keff Uyk; M̂Uk

� � ¼ 1� kp

keff
ð9Þ

2 It must be remarked that the latest versions of the MCNP code can also provide
values for adjoint-weighted parameters. The calculation methodology is based on an
interpretation of the adjoint flux as iterated fission probability (Kiedrowski et al.,
2010, 2011).

3 Notice that the k-mode flux, Uk , obtained as solution of Eq. (4) only corresponds
to the physical flux for a critical system. As the system departs from criticality, the
physical flux also begins to differentiate from Uk . Hence, the concept of effective
delayed neutron fraction losses significance for systems far away from critical.
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