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a b s t r a c t

An exact analytical solution of the time-independent monoenergetic neutron transport equation is
obtained in this paper. The solution is applied to systems with a point source. Systematic analysis of
the solution of the time-independent neutron transport equation, and its applications represent the
primary goal of this paper. To the best of the author’s knowledge, certain key results on the scalar neutron
flux as well as their derivations are new. As an application of these results, a scalar neutron flux for a
purely absorbing medium with a spherically piecewise constant cross section and an isotropic point
neutron source off the origin as well as that for a cylindrically piecewise constant cross section with a
point neutron source off the origin are obtained. Both of these results are believed to be new.

� 2013 Published by Elsevier Ltd.

1. Introduction

This paper describes an exact solution of the time-independent
one-speed neutron transport equation, and its applications to sys-
tems with a point source. The primary purpose of this paper is to
systematically treat the solution of the time-independent neutron
transport equation, and its applications. Even though the solution
of the time-independent neutron transport equation has been
widely discussed in the literature (e.g., Davison and Sykes, 1957;
Case and Zweifel, 1967; Duderstadt and Martin, 1979; Ganapol,
2008), some of the results in this paper do not seem to have been
published. To the best of the author’s knowledge, certain key re-
sults on the scalar neutron flux as well as their derivations are
new. Furthermore, some of the applications of these results are
also new, in particular, the results for spherically and cylindrically
piecewise constant macroscopic cross sections with an isotropic
point source off the origin in a purely absorbing medium.

Developing analytical results and obtaining solutions for
particular material and geometrical systems are important in
regard to the verification of codes, since they will provide
benchmark solutions for the codes. In the present paper a scalar
neutron flux has been obtained for a purely absorbing medium
with a variable macroscopic cross section (i.e., spatial variable

dependent macroscopic cross section), when the neutron source
density is given. This solution can be used to obtain special
solutions for a variety of material and geometrical systems.
Particular systems explored in this paper are a material system
with a spherically piecewise macroscopic cross section and an
isotropic point neutron source as well as a material system with
a cylindrically piecewise macroscopic cross section with an isotro-
pic point neutron source. However, the general solution obtained
in the present paper can be used to other material and geometrical
systems with point neutron sources as well as non-point (i.e.,
distributed) neutron sources.

2. Problem statement

Let us consider the time-independent one-speed neutron
transport equation, which is given by

X � rwðr;XÞ þ RðrÞwðr;XÞ ¼ Qðr;XÞ ð1Þ

where w(r, X) is the angular neutron flux, r is a position vector, X
is a unit vector in the direction of the neutron motion, R(r) is the
total macroscopic cross section, and Q(r, X) is the sum of the source
and the scattering terms. Our goal is to derive a general solution for
Eq. (1), converting that solution to an expression for the scalar
neutron flux in terms of volume integral, and to use the result to
obtain specific analytical results for a variety of material systems
with a point source.
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3. Mathematical formulation

Let us introduce a new variable R, which is geometrically repre-
sented in Fig. 1.

Using this new and additional variable, R, Eq. (1) can be written
as an ordinary differential equation in terms of R as follows.

� d
dR

wðr � RX;XÞ þ Rðr � RXÞwðr � RX;XÞ ¼ Qðr � RX;XÞ ð2Þ

with

wðr;XÞ ¼ wðr � RX;XÞjR¼0 ð3Þ

Eq. (2) can be easily integrated in terms of R, and after some
manipulations involving the applications of the free surface bound-
ary condition or the boundary condition at infinity following
Davison and Sykes (1957), we obtain

wðr;XÞ ¼ wðr � RX;XÞjR¼0

¼
Z 1

0
dR0e�

R R0

0
Rðr�uXÞduQðr � R0X;XÞ ð4Þ

where R0 is a dummy variable, and it is noted that the substitution
of R = 0 has already been performed. It should be pointed out, how-
ever, that the above Eq. (4) is more general than the one derived in
Davison and Sykes (1957), since Davison obtained the result only
for an isotropic source with a constant macroscopic cross section.
It can be shown that the above result is equivalent to a solution gi-
ven in Duderstadt and Martin (1979), if Q is replaced by the source
term S. Duderstadt and Martin (1979), however, did not show the
detail of the derivation. Eq. (4) is a fundamental result for Eq. (1),
and from which an integral equation for w(r, X) can be derived in
general. Here instead of w(r, X), we will focus on the scalar neutron
flux, which is given by

UðrÞ ¼
Z

4p
dXwðr;XÞ ð5Þ

where the differential steradian dX is defined at the location X rel-
ative to the neutron, and they are defined in terms of local spherical
coordinates located at the neutron as

dX ¼ sin hdhd/

X ¼ ðsin h cos /; sin h sin /; cos hÞ
ð6Þ

Accordingly, the integral over the steradian X is defined as
Z

4p
dX ¼

Z p

0
dh
Z 2p

0
d/ sin h ð7Þ

Substituting (4) into (5), we obtain

UðrÞ ¼
Z 1

0
dR0
Z

4p
dXe�

R R0

0
Rðr�uXÞduQðr � R0X;XÞ ð8Þ

Let us introduce a new variable

r0 ¼ r � R0X ð9Þ

From (9), we have

R0 ¼ jr � r0j

X ¼ r � r0

jr � r0j
ð10Þ

It should be also noted thatZ 1

0
dR0
Z

4p
dX ¼

ZZZ
V

dr0

ðR0Þ2
¼
ZZZ

V

dr0

jr � r0j2
ð11Þ

where V is the entire three dimensional Euclidean space. Using Eqs.
(9)–(11) in (8), we finally obtain

UðrÞ ¼
Z

v

dr0

jr � r0j2
e�jr�r0 j

R 1

0
dvRðð1�vÞrþvr0 ÞQ r0;

r � r0

jr � r0j

� �
ð12Þ

where the volume integral is performed in the entire three dimen-
sional Euclidean space. This is a fundamental result for the scalar
neutron flux, which can be used to derive an integral equation for
the scalar neutron flux U(r). In the case of purely absorbing media,
Q(r0, X) can be replaced with a source density S(r0, X). In that case,
instead of an integral equation, we obtain a closed-form solution for
U(r) as

UðrÞ ¼
Z

v

dr0

jr � r0j2
e�jr�r0 j

R 1

0
dvRðð1�vÞbirþvr0ÞS r0;

r � r0

jr � r0j

� �
ð13Þ

If the macroscopic cross section is constant, Eq. (13) reduces to

UðrÞ ¼
Z

v

dr0

jr � r0j2
e�Rjr�r0 jS r0;

r � r0

jr � r0j

� �
ð14Þ

The above two equations (13) and (14) are used in the following
sections to obtain specific results for the scalar neutron flux. The
above two results (12) and (13), and their derivations seem to have
never been published in the literature.

4. Point source with a variable macroscopic cross section

The source density for an isotropic point source with the source
strength S0 neutrons per second located at r = a can be expressed
as

Sðr;XÞ ¼ S0

4pdðr � aÞ ¼ S0

4pdðr � axÞdðr � ayÞdðr � azÞ ð15Þ

where d(r � a) is Dirac delta function in 3D. Substituting (15) into
(13), we obtain

UðrÞ ¼ S0

4pjr � aj2
e�jr�aj

R 1

0
dvRðð1�vÞrþvaÞ ð16Þ

This is a general result for the scalar neutron flux with an isotro-
pic point source located at r = a with the source strength S0 in a
material with a variable macroscopic cross section. This result is
used in the following subsections to obtain particular results.

4.1. Spherically piecewise constant macroscopic cross section with an
isotropic point source at the origin

Let us consider a piecewise constant macroscopic cross section
given by

RðrÞ ¼

R1 0 < jrj < r1

R2 r1 < jrj < r2

..

.

Rn rn�1 < jrj < rn

Rnþ1 rn < jrj <1

8>>>>>>><
>>>>>>>:

ð17Þ

where rk is the outer radius of the kth spherical shell. Substituting
a = 0 and (17) into (16), we obtain

⋅

R−r ΩΩ

R− ΩΩ

r

Ω

Fig. 1. Introduction of a new variable R.
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