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a b s t r a c t

We present an integral equation that describes the uncollided particle flux for the case of an inward
spherical shell source of radius R. This is a reasonable description, for example, of a point source that
moves on a spherical surface located at distance R from the target of a radiation treatment. The additional
assumption of conditions for radial symmetry allows the derivation of an integral equation that relates
the scalar flux to the description of the beam source as function of the angle between the direction of
the source particles and the normal to the sphere.

Analytical and numerical solutions for this integral equation are successfully compared with, respec-
tively, known analytical results and with Monte Carlo simulations. The integral equation can then be used
for solutions of the inverse problem: given the flux obtain the source, i.e. the shape of the beam. A numer-
ical algorithm was developed for this purpose as well as an analytical solutions based on the solution of
the integral equation by the use of the Laplace transform.

The optimal shape for the beam is then obtained based on the constraint that the source has to be posi-
tive and finite everywhere, allowing the design of appropriate collimators for the beams. Monte Carlo cal-
culations as a function of the number of collisions show that the uncollided flux for the beam so
determined behaves as expected and that penumbra effects due to multiple collisions are sufficiently
small (�20%) to consider the beam as a good first guess for an iterative procedure for the design, for
example, of 3-D conformal radiotherapy treatment.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A typical problem related to the transport of nuclear particles
for nuclear engineering applications is the direct problem: given
the sources obtain the particles fluxes and their functionals. Many
algorithms for computer calculations (RSICC, 2013) were devel-
oped and they are available for the design of a variety of systems
from nuclear reactors to shielding requirements.

The inverse problem in transport theory, i.e. given the fluxes
and their functionals, compute the sources, is obviously much
more complex and difficult to solve but it is of absolute importance
in fields like radiotherapy or in non destructive assay methods to
detect the presence of unusual conditions for the tested material.

Given the problem of the optimization of the particles fluxes in an
extended region, available algorithms and codes for the direct meth-
od allow two oppositive approaches: (1) to analyze the sensitivity of
the response in the extended region to changes in one point of the
phase space for the source (trial and error) or (2) to analyze the sen-
sitivity of the response in one point of the extended region to all pos-
sible changes of the source (Difilippo, 1998). Ideally the solution of
the inverse problem would overcome these limitations.

Presently, three dimensional conformal radiotherapy planning
for cancer patients involves the optimization of the radiation field
through two steps: (1) the calculations of the sensitivities of the
dose to the description of the source in phase space, and (2) the
use of the sensitivities in an iterative optimization algorithm to de-
fine the source. Any good guess to start the iterations might sub-
stantially reduce the number of iterations required to solve the
problem. The goal of this work is to help to find a good guess for
the beam source.

Our idealized inward source is located at the surface of a sphere
of radius R, which is a reasonable description for real treatments or
assay methods. Section 2 is dedicated to the free streaming, i.e.
there is nothing within the sphere, the integral equation for the
flux is solved for the direct and inverse problems. Analytical and
numerical solutions are then compared with Monte Carlo
simulations.

Section 3 deals with the direct and inverse problem for the
uncollided flux in a media inside the sphere. Materials, concentra-
tions and dimensions correspond to the human body. Results are
verified through Monte Carlo simulations to show that the calcu-
lated beams are a good first guess for radiotherapy planning. Appli-
cations to the design of collimators for photon sources are shown
in Section 2.
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2. Radiation field inside an empty spherical shell source

In this section we write the general equations for the case of an
inward spherical shell source, further assumptions of conditions
for radial symmetry allow the derivation of a simple integral equa-
tion for the scalar flux, which is solved for the direct and inverse
cases and corroborated with analytical and numerical tests. Some
of the results for the direct problem were published by Case
et al. (1953), we include them here for completeness.

Our inward shell source is located over a sphere of center O and
radius R as described in Fig. 1.

One general source point A, located on the sphere at angular
coordinates (a,b), produces particles in the direction ~Xðhs;wsÞ,
where the directional angles (hs, ws)are defined with respect to
the normal to the sphere at point A. These particles move toward
a field point B of coordinate ~r whose local flux direction is also
~Xðh;wÞ but referred to directional angles (h, w) defined with re-
spect to the direction of the field point~r .

From the point of view of field point B, the contributions to the
vector field at (r, ~X) come from a point A whose angular coordi-
nates are functions of r and ~X, i.e. (a ¼ a~r; ~XÞ and b ¼ bð~r; ~XÞ. Sim-
ilarly, the directional angles with respect to the normal to the
sphere are hS ¼ hSð~r; ~XÞ and wS ¼ wSð~r; ~XÞ.

Fig. 2 which corresponds to the slice of the sphere produced by
plane OAB shows that the relationship between the polar angle of
the source particle, hs, and the polar angle of the field, h, is given by

ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2 þ q2l2

q
ð1Þ

where the polar angle for the source particles are measured with re-
spect to the inward normal to the sphere, l = cos h, ls = cos hs and
q = r/R.

The vector field is then

Fð~r; ~XÞ ¼ Sðhs;ws;a;bÞ=lS ð2Þ

the denominator in Eq. (2) corresponds to the ratio of field to source
area element. It appears because the intensity of the source is de-
fined per unit area of the sphere.

Considerable simplifications can be obtained as we assume con-
ditions for radial symmetry, that is the intensity of the shell source
is independent of the position over the sphere (a, b) and indepen-
dent of the azimuth angle ws. Under these circumstances and with
the source normalized to 1 particle for the whole sphere, S(lS, -
wS) = (1/4pR2)(1/2p)D(lS), the vector flux integrated over azimuth
is given by

f ðr;lÞ ¼
Z 2p

0
Fð~r; ~XÞdw ¼ DðlsðlÞÞ=ðlSðlÞ4pR2Þ ð3Þ

where D(lS), the source per unit lS, is normalized to one incoming
particle

R 1
0 DðlSÞdlS ¼ 1:

The vector flux given by Eq. (3) can now be integrated on the
polar angle to obtain the scalar flux. Fig. 2 shows two contribu-
tions: one coming from ‘‘below’’, for positive l and one coming
from ‘‘above’’, for negative l. Eq. (1) allows us to change the inte-
gration on l to an integration in ls, in this way the contribution
from l > 0 is

UþðqÞ �
Z 1

0
f ðr;lÞdl ¼ 1

4pR2q

Z 1

ffiffiffiffiffiffiffiffi
1�q2
p

DðlsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1þ l2

s

p dls ð4Þ

and the contribution from l < 0 is

U�ðqÞ �
Z 0

�1
f ðr;lÞdl ¼ 1

4pR2

Z 1

ffiffiffiffiffiffiffiffi
1�q2
p

DðlsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1þ l2

s

p dls ð5Þ

i.e. equal to U+(q) because in Eq. (5) l ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl2

s � 1Þ=q2
p

.
The total scalar flux is then given by the integral equation

UðqÞ ¼ 1
2pR2q

Z 1

ffiffiffiffiffiffiffiffi
1�q2
p

DðlsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1þ l2

s

p dls ð6Þ

The next two sections are dedicated to the direct and inverse
problem defined by this equation. Cross checking between analyt-
ical and numerical results associated with the integral equation are
made and additionally they are compared with direct calculation
with the Monte Carlo code MCNP (X-5 Monte Carlo Team, 2003).

2.1. Analytical and numerical calculations for the direct problem in an
empty shell

We develop here an algorithm to solve numerically the integral
Eq. (6) which can work in both directions, for the direct and the in-
verse problems. We discussed also some analytical results which
can be used to test the algorithm; additionally comparisons with
MCNP direct calculations give additional support to the methodol-
ogy developed.

2.1.1. Some analytical results for the direct problem in an empty shell
Some simple source distributions for the case of free streaming

produce analytical solutions for the flux. By direct application of
Eq. (3), for the vector flux, and direct integration in l, we obtain
the results of Table 1 for the cases of isotropic, lineal, quadratic
and beam dependence for the intensity of the source as function
of ls. The first three cases were already obtained by Case et al.
(1953).
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Fig. 1. Geometry for the analysis of the transport of particles produced in a
spherical shell source of radius R defining source and field points, A and B,
respectively.
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Fig. 2. Cut OAB of Fig. 1 defining polar angles for the source and the field points.
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