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a b s t r a c t

We have developed the linear and quadratic Galerkin discontinuous finite element methods for the solu-
tion of both time-independent and time-dependent spherical geometry neutron transport problems. Dis-
crete ordinates method is used for the angular discretization while the implicit method is utilized for
temporal discretization in time-dependent problems. In order to assess the relative performance of the
newly developed linear and quadratic discontinuous finite element spatial differencing methods relative
to the previously developed linear discontinuous finite element and diamond difference discretizations, a
computer code is developed and numerical solutions of the neutron transport equation for some bench-
mark problems are obtained. These numerical applications reveal that the newly developed quadratic
discontinuous finite element method produces the most accurate results while the newly developed lin-
ear discontinuous finite element method follows as the second best discontinuous finite element method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The discontinuous finite element method (DFEM) is among the
most flexible numerical methods in discrete ordinates (SN) formu-
lations of neutral particle transport. The method was first intro-
duced for the solution of the time-independent neutron transport
equation (Reed and Hill, 1973). The developments in general DFEM
have been recently reviewed (Cockburn et al., 2000; Cockburn,
2001). DFEM uses piecewise polynomial spaces similar to the (con-
tinuous) finite element method (FEM) but with relaxed continuity
conditions at interelement boundaries. Trial functions can be
chosen so that the field variable, its derivative or both are discon-
tinuous across interelement boundaries. The method includes as
its subsets both the FEM and finite difference methods (FDM). It
has been reported that DFEM has the advantages of both the
FDM and FEM (Li, 2006).

Several computer programs have been developed for neutron
transport using the linear discontinuous finite element method
(LDFEM) (Reed et al., 1973, 1977; Seed et al., 1977, 1978; Wareing
et al., 1996). ONETRAN and TIMEX are examples of these codes for
the solution of time-independent and time-dependent transport,
respectively (Hill, 1975, 1977; Hill et al., 1976). Recently, the
LDFEM formulation, similar to the formulation used in TIMEX,
has been employed in spherical geometry (Hong et al., 2010). In
another study, piecewise LDFEM is applied to the two-dimensional

cylindrical geometry and accurate results are reported (Bailey
et al., 2009).

Higher-order DFEM has been extensively investigated in other
disciplines (Hesthaven and Warburton, 2008). But, in neutron
transport, limited research has been carried out using elements
of higher degree. For example, a higher order DFEM has been
developed for the time-independent transport equation by using
hierarchical basis functions (Wang, 2009). In another study, higher
order DFEM was used in both angular and spatial differencing for
the solution of time-independent, pure absorber problems, in
spherical geometry (Machorro, 2007). A comparison of linear and
quadratic DFEM for triangular lattice discrete ordinates calcula-
tions was also presented (Chang and Warsa, 2007).

The first objective of this study is to reformulate and implement
LDFEM for time-independent and time-dependent neutron trans-
port problems in spherical geometry. The time dependent formula-
tion will be based on the prompt neutron transport equation and
the delayed neutron effects will not be treated. Our LDFEM formu-
lation will be henceforth called as LD2 while the spherical geome-
try LDFEM formulation of TIMEX will be called as LD1 (Hill, 1975,
1977; Hill et al., 1976; Hong et al., 2010).

The second objective of this study is to develop a higher-order
DFEM formulation for the solution of neutron transport problems
in spherical geometry both for the time-independent and time
dependent variety. As a higher-order DFEM, we employ the qua-
dratic discontinuous finite element method (QDFEM).

In this paper, we will first present the derivations of linear
systems of equations for LD1, LD2 and QDFEM for the solution of
time-independent and time-dependent prompt neutron transport
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equation in spherical geometry. We will use the classical Galerkin
method in which the weight functions are taken to be the same as
the shape functions which are Lagrange type polynomials with
compact support in LD2 and QDFEM. We have developed a discrete
ordinates computer code, SPDOT, in which the spatial discretiza-
tion can be carried out using diamond difference (DD), LDFEM
(LD2) or QDFEM approaches. Also, we have developed another
version of the SPDOT for LD1 calculations of this study. Since DD
formulation is given elsewhere (Lewis and Miller, 1984), it would
not be repeated here.

Implicit method is used for the temporal differencing in time-
dependent problems. Both codes are run for several time-indepen-
dent and time-dependent benchmark problems to assess the
performance of various spatial discretization methods in the solu-
tions of neutron transport problems by the discrete ordinates
method.

The remainder of this paper is organized as follows. In Sec-
tion 2, LDFEM and QDFEM formulations are described. Section 2.1
describes the discrete ordinate spherical geometry transport
equation and the weighted residual forms of this equation for
spatial discretization methods LD1, LD2 and QDFEM. LD2 and
QDFEM approximations are given in Section 2.2 while LD1
approximation is given in Section 2.3. Finite element formulations
of LDFEM and QDFEM are given in Sections 2.4 and 2.5 respec-
tively. In Section 2.6, time differencing scheme is applied to the
derived equations in previous sections. Section 2.7 describes the
boundary condition applied at the centre of the sphere. In Sec-
tion 3, numerical results of DD, LDFEM and QDFEM are compared.
Section 3.1 is devoted to time-independent criticality problems
while Section 3.2 is for the analysis of time-dependent behavior
of the methods. In the final section, some concluding remarks
are given.

2. Discontinuous finite element formulation

First, we describe the linear and quadratic discontinuous finite
element methods for the spatial discretization of the time-inde-
pendent within group neutron transport equation in spherical
geometry using the discrete ordinates form. Details of the sweep
of the space-angle mesh in the spherical geometry discrete ordi-
nates neutron transport are given elsewhere (Lewis and Miller,
1984).

2.1. The discrete ordinates spherical geometry transport equation and
the weighted residual forms

The spherical geometry time-independent within group neu-
tron transport equation in conservation form is written as:

l @ðr
2wÞ
@r

þ r
@ ð1� l2Þw
� �

@l
þ r2rðrÞwðr;lÞ ¼ r2qðr;lÞ ð1Þ

We omit group indices for the sake of clarity. In Eq. (1), angular
variable l denotes the radial component of particle direction, spa-
tial variable r is the distance from the origin, w is the angular neu-
tron flux, r is the macroscopic total cross section and q is the
emission density which includes the inhomogeneous (or fixed)
source, scattering source and fission contribution to the group
source.

In order to develop the discrete ordinates equations, the angular
domain l 2 [�1, +1] is discretized into M (m = 1,2, . . . ,M) quadra-
ture points lm with weights wm. We introduce the spherical geom-
etry discrete ordinates form of transport equation by introducing
the angular differencing coefficients, am+1/2 and am�1/2 (Lewis and
Miller, 1984) into Eq. (1):
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Diamond differencing (DD) in angle is used to relate the edge
(wm+1/2(r), wm�1/2(r)), and cell-centered (wm(r)) angular fluxes:

wmþ1
2
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In order to make the derivation easier, the local spatial variable
n 2 [�1, +1], is introduced as:

rðnÞ ¼ �ri þ
Dri

2
n ð4Þ

where �ri ¼ ðri�1=2 þ riþ1=2Þ=2 and Dri = ri+1/2 � ri�1/2 represent the
midpoint and interval size of the ith mesh interval which is as-
sumed to be homogeneous. Fig. 1 illustrates the arrangement of
angular flux node points in (i, m)th cell of the spherical domain.

Using Eqs. (3) and (4), Eq. (2) is written with respect to local
variable as:
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2.1.1. Weighted residual form for the LD2 and QDFEM formulations
LD2 and QDFEM formulations are based directly on Eq. (5).

Since wm(n) and wm�1/2(n) are approximate solutions then they
cannot be expected to satisfy Eq. (5) at all points in the mesh inter-
val. We require that these approximate solutions satisfy Eq. (5)
only in an integral sense by integrating Eq. (5) after multiplication
with a weight function, w(n), and arrive at the weighted residual
(Galerkin) form:

2lm

Dri

Z 1

�1
wðnÞ d

dn
½r2ðnÞwmðnÞ�dn

þ 2
wm

2amþ1
2

Z 1

�1
wðnÞrðnÞwmðnÞdn� am

Z 1

�1
wðnÞrðnÞwm�1

2
ðnÞdn

� �
þ ri

Z 1

�1
wðnÞr2ðnÞwmðnÞdn

¼
Z 1

�1
wðnÞr2ðnÞqmðnÞdn

ð6Þ

where

am ¼ amþ1=2 þ am�1=2 ð7Þ

Applying integration by parts to the first term on the left hand side
of Eq. (6), we obtain:

Fig. 1. A unit cell for DFEM formulations.
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