
Developing a computational tool for predicting physical parameters
of a typical VVER-1000 core based on artificial neural network

S.M. Mirvakili a,b, F. Faghihi a,c,⇑, H. Khalafi b

a Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, 71936-16548 Shiraz, Iran
b Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), Tehran 14399-51113, Iran
c Research Center for Radiation Protection, Shiraz University, Shiraz, Iran

a r t i c l e i n f o

Article history:
Received 22 February 2012
Received in revised form 22 April 2012
Accepted 23 April 2012
Available online 21 September 2012

Keywords:
Artificial neural network
Neutronics
Thermal hydraulics
VVER-1000
MDNBR

a b s t r a c t

The main goal of the present article is to design a computational tool to predict physical parameters of
the VVER-1000 nuclear reactor core based on artificial neural network (ANN), taking into account a
detailed physical model of the fuel rods and coolant channels in a fuel assembly. Predictions of thermal
characteristics of fuel, clad and coolant are performed using cascade feed forward ANN based on linear
fission power distribution and power peaking factors of FAs and hot channels factors (which are found
based on our previous neutronic calculations). A software package has been developed to prepare the
required data for ANN training which applies a modified COBRA-EN code for sub-channel analysis
and links the codes using the MATLAB software. Based on the current estimation system, five main core
TH parameters are predicted, which include the average and maximum temperatures of fuel and clad as
well as the minimum departure from nucleate boiling ratio (MDNBR) for each FA. To get the best
conditions for the considered ANNs training, a comprehensive sensitivity study has been performed
to examine the effects of variation of hidden neurons, hidden layers, transfer functions, and the learning
algorithms on the training and simulation results. Performance evaluation results show that the devel-
oped ANN can be trained to estimate the core TH parameters of a typical VVER-1000 reactor quickly
without loss of accuracy.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

An accurate prediction of thermal–hydraulics (THs) perfor-
mance of a nuclear reactor is a major concept in its design for both
economic and safety reasons. Development of economically advan-
tageous and safe operating conditions requires methods of more
accurate and detailed analysis of the TH processes. Moreover,
many safety margins are initially related to neutronics behavior
of a reactor (e.g., reactivity feedbacks, MDNBR). Therefore, a deeply
understanding and calculations of both neutronics and TH make a
nuclear reactor analysis. For instance, the main objective in a PWR
reactor core TH design is determination of maximum capability of
heat removal in most powered channel named hottest channel.
The imposed restriction of DNB requires accurate TH analysis
based on computations of flow and enthalpy distribution using a
detailed physical model. In individual hottest channel, pertinent
nuclear and engineering affects are considered. This single channel
in a fuel assembly that is established with four adjacent fuel rods in

a square lattice (in the Western square design core) or with three
neighboring rods in a triangular lattice (in the Russian hexagonal
core, e.g., VVER type) is often referred to sub-channel. The TH de-
sign based on sub-channel analysis has been taking into account
for some advantages; for instance, local variations in dimensions,
power generation, flow redistribution, and flow mixing (Chelemer
et al., 1972). Also based on this approach, local TH conditions of the
hot sub-channel and hottest fuel rod can be determined.

The main goal of a sub-channel analysis is to determine critical
heat flux in terms of DNBR, maximum fuel and clad temperatures,
and coolant TH conditions during normal and/or hypothetical acci-
dents conditions. This precious analysis of a reactor core requires a
detailed map of thermal fission power distribution in the FAs and
fuel rods. The power density distribution cannot be directly mea-
sured and is usually described in terms of power peak factors, axial
and quadrant power differences. The current real time simulation
tools, to predict power density distribution and the DNBR, have
uncertainties as high as 20% (Souza and Moreira, 2006), and it is
important to find alternatives to improve their accuracy.

ANN allows modeling complex systems without requiring
an explicit knowledge of formulations that exist among the
variables, and constitute an alternative to structure models or
empirical correlations (Haykin, 1999; Tsoukalas and Uhrig, 1997).
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Literatures surveys indicate a wide variety of applications of ANNs
to nuclear engineering such as for plant control (Boroushaki et al.,
2004), in-core fuel management optimization (Sadighi et al., 2002),
non-linear dynamics and transient diagnosing (Khalafi and
Terman, 2009), core parameter prediction (Mazrou, 2009), and sig-
nal validation (Ikonomopoulos and Van Der Hagen, 1997). Specifi-
cally to our case, there are applications for establishing a
correlation among primary system variables to obtain information
about the power density distribution for improving estimation of
the MDNBR (Lee and Chang, 2003; Na et al., 2004; Kim and Chang,
1997). They developed neural networks to estimate the DNBR
using input core TH variables and power distribution information
in the form of radial peaking factor and axial power density. The
results of these researches show that, for constant and known axial
power density distribution, the DNBR was predicted with 3.5%
accuracy (Kim and Chang, 1997) while for those cases in which
the power density distribution was unknown and could change,
they predicted DNBR with at least 10% accuracy (Lee and Chang,
2003; Na et al., 2004). In these articles, the common considered
approach was to use one neural network to bear all the knowledge
involved in the problem; such as how to determine the power den-
sity distribution and how to estimate the critical heat flux. In most
of the applications, they considered one hidden layer sufficient to
solve the problem and its number of neurons are varied according
to the considered number of input and output.

This work employed ANNs to predict safety TH parameters of
the Bushehr VVER-1000 reactor core include maximum and aver-
age temperature of the fuel and clad and MDNBR for the hottest
fuel rod in each fuel assembly of the core. A very fast estimation
system has been developed using a cascade feed forward type of
ANNs on the basis of linear fission power distribution and power
peaking factors of each fuel assembly and its corresponding rod.

Preparing the input for the TH codes such as COBRA and also
running the code and obtaining results are time consuming. In
addition human error in preparing the input files can cause some
difficulties. If the power distribution changes, it is necessary to
regenerate the input and run the code again. While by using the
ANN model developed in this article, one has the capability to cal-
culate the safety TH parameters by knowing just the power peak-
ing factors. These factors are computed by the core designer for
each core configuration and different FAs burn-up or they are mea-
sured from ex-core and in-core detectors. This tool can be used for
TH analysis of the VVER-1000 type reactor core that have same
specifications as well as for coupling of neutronic and thermal–
hydraulic computations.

The DNBR is a very important safety parameter of the core
which must be monitored continuously and in real time by the
rector protection system (RPS) in nuclear power reactors (Souza
and Moreira, 2006). Therefore the proposed computational tool
can be used as a part of the RPS system to predict the safety param-
eters very fast. However, in this stage we are able to predict TH
safety parameters just by using the measured PPF. Therefore, this
model can be applied as a part of a general fast predicting tool to
compute DNBR parameter for RPS and in the future study we are
going to design a comprehensive tool which is applied in transient

conditions by considering changes in other reactor parameters
such as pressure, flow, inlet temperature and critical boron
concentration.

This model has the capability of computing TH core parameters
very fast and accurate with high degree of reliability in different
core burn up and configurations and can also be applied for prob-
lems of optimization of the core configuration design, because in
this case one needs a fast method to calculate the values of fitness
functions during optimization process. This ANN method is effec-
tively faster than iterative numerical methods.

In the current research, sub-channel TH analysis has been per-
formed using an accurate physical model for the Bushehr NPP, a
Russian VVER-1000 fuel assembly at hot full power (HFP) and stea-
dy-state condition. Neutronics calculations and reactivity coeffi-
cients were found previously using WIMS and CITATION codes
(Faghihi et al., 2007). Also, a full Monte-Carlo core simulation for
shut down margin estimations of both current solid fuel and annu-
lar pins (a proposal for the next generation VVER reactor) were car-
ried out (Farshad Faghihi and Mirvakili, 2011). Moreover, herein,
the COBRA-EN code (Basile et al., 1999) is used as the main TH
analysis code that we previously have modified it for TH behavior
of the VVER-1000 core (Safaei Arshi et al., 2010). This code has
capability of sub-channel analysis of LWR core to predict distribu-
tion of flow, temperature, density and pressure for both single and
two phase flow conditions.

2. Artificial neural network

Artificial neural networks can be defined as a parallel distributed
processor consisting of a great number of processing elements, neu-
rons, connected to each other with different connection strengths.
The strength of a connection between neurons is called weight. In
the beginning of the neural development process, these weights
are initialized randomly and are adjusted in a model calibration
phase called training so that to minimize the error between calcu-
lated outputs and the corresponding target output values for the
particular training data set, whereas the testing subset is used to
check the performance of the developed network. The types of ANNs
are different and associated with its applications.

2.1. Cascade feed forward neural network

In this paper a very fast estimation system of the core TH
parameters has been introduced and developed using cascade feed
forward type of ANNs. A feed forward multilayered network
consists of a layer of input, a layer of output neurons, and one or
more hidden layers of neurons. Fig. 1 shows a general type of a
three layers feed-forward ANN. This type of ANNs has wide appli-
cations in parameter prediction and data approximation problems.
A cascade type of feed forward ANNs is similar to a general type of
feed-forward ANNs; the first layer has weight coming from the in-
put. But each subsequent layer has weight coming from the input
and all previous layers so that all layers have biases, and the last
layer is the network output. Each layer weights and biases must

Nomenclature

h heat transfer coefficient (W/m2 K)
Pr Prandtl number at average coolant temperature
hin inlet enthalpy (J/kg)
hfg vaporization enthalpy (J/kg)

G coolant mass flux (kg/s m2)
Xin inlet flowing vapor quality
q00 local heat flux (W/m2)
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